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SUMMARY

Many aviation forecasts agree that global passenger demand will continue to

increase steadily over the next few decades. The increasing difficulty of balancing

environmental impacts with these operations is a major obstacle to the sustainable

growth of the aviation industry. These environmental impacts include, but are

not limited to, community noise exposure, local air quality around the airport

terminal-area, and climate effects. Organizational bodies such as the Joint Planning

and Development Office (JPDO) in the United States and the International Air

Transport Association (IATA) have stressed the importance of new aircraft-level

technologies as the enabler for sustainable growth, but detailed fleet-level models

like the Aviation Environmental Design Tool (AEDT) feature complicated setups

and prohibitively long run times for enumerating multiple technology scenarios. The

goal of this thesis was to develop a framework for modeling relevant environmental

performance metrics and objectively simulating the future environmental impacts

of aviation given the evolution of the fleet, the development of new technologies,

and the expansion of airports. The research focuses on how to evaluate fleet-level

impacts of vehicle-level technologies with enough computational speed to enable

scenario analysis. By exchanging fidelity for computational speed, a screening-level

framework for assessing aviation’s environmental impacts can be developed to observe

new insights on fleet-level trends and inform environmental mitigation strategies.

This was accomplished by developing per class average “generic-vehicle” models

that can reduce the fleet to a few representative aircraft models for predicting fleet

results with reasonable accuracy. The method for Generating Emissions and Noise,

Evaluating Residuals and using Inverse method for Choosing the best Alternatives

xiii
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(GENERICA) expands a previous generic vehicle formulation to additionally match

DNL contours across a subset of airports. Discriminant analysis was leveraged to

assign aircraft to groups that reduced the variance per class. Designs of experiments,

surrogate models, Monte Carlo simulations, and “desirability” scores were combined

to set the vehicle design parameters and reduce the mean relative error across the

subset of airports. Results show these vehicle models more accurately represented

contours at busy airports operating a wide variety of aircraft as compared to

a traditional representative-in-class approach. Additionally, a rapid method for

assessing population exposure counts was developed and incorporated into the noise

tool, and the generic vehicles demonstrated accuracy with respect to population

exposure counts for the actual fleet in the baseline year.

To demonstrate the capabilities enabled by these generic vehicles, a few technology

scenarios and replacement schedules were defined. The generic vehicles were

used as virtual test-beds for quantifying aircraft-level performance improvements.

Existing system-wide fleet performance tools were integrated to simultaneously assess

savings in fuel burn and noise contours for each technology scenario relative to

a Business-as-Usual scenario. The technology scenarios demonstrated significant

improvements in fuel efficiency and reductions in population exposure over time, with

the replacement schedule for the single aisle vehicles proving most critical for each.

Finally, the rapid noise tool was leveraged to explore placements of new runways at ten

capacity constrained airports. Contour areas and population exposure counts from

a continuous space of possible new runway locations were evaluated for 2030 flight

schedules at these airports. The configurations for minimal contour area proved quite

different than configurations for minimal population exposure. Fleet-level integration

of the best runways showed additional reductions in population exposure counts for

each technology scenario despite increases in contour areas.

xiv
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CHAPTER I

INTRODUCTION

Despite powerful market shocks the aviation sector has recorded robust growth in

recent history, and experts from industry and government alike expect this trend

to continue in the coming years. The Boeing Company recently raised its 20-year

forecast for commercial jet demand by 3.8% due to market indicators which show

that “air traffic outstrips global economic growth” and that “passenger traffic has

been very resilient,” thus requiring an increase in production of vehicles to replace

an aging fleet [1]. Airlines have also demonstrated their confidence in the industry

over the long term, as indicated by the large number of purchases announced at the

2013 Paris Air Show, including “signed orders and purchase commitments... for 466

planes” from Airbus and a “tally of 442 planes” for Boeing [2]. Between Boeing

and Airbus there are now 24 planes rolling off assembly lines per week; the number

stood at 11 a decade ago [3]. That rate of growth is expected to continue climbing

as airlines move to replace older “gas-guzzling” aircraft in the wake of higher fuel

costs. Moreover, the FAA predicts that passenger enplanements will increase 92.3%

by 2040, or approximately 2.3% annually [4]. All of these projections, however, are

demand-based forecasts that assume national and international air transportation

systems will be able to support the increasing size of the fleet and a corresponding

increase in the volume of flights.

While airport capacity limits and air traffic deconfliction are important issues

that must be resolved to accommodate this future demand, these are not the only

constraints on the sustainable growth of the aviation industry. In fact, a Government

Accounting Office survey of the 50 busiest airports in the year 2000 revealed that the

1
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increasing difficulty of balancing environmental concerns with airport operations was

one of the primary obstacles to completing new runway projects, which is in turn the

most effective method for increasing airport capacity [5]. In fact, the Joint Planning

and Development Office’s (JPDO) 2007 Concept of Operations projected that based

on current operational trends, environmental impacts will be the primary constraint

on the capacity and flexibility of the Next Generation Air Transportation System

(NextGen) unless these impacts are managed and mitigated. The latter document

suggests the following strategies for mitigating environmental impacts:

“New technology, procedures, and policies in NextGen minimize impacts

on community noise and local air quality and mitigate water quality

impacts, energy use, and climate effects. NextGen environmental

compatibility is achieved through a combination of improvements

in aircraft design, aircraft performance and operational procedures,

land use around airports, and policies and incentives to accelerate

technology introduction into the fleet. Intelligent flight planning and

improved flight management capabilities enable the optimization of route

selection, landing, and approach procedures based on a range of data

including noise, emissions, and fuel burn, thus enhancing the ability

to reduce environmental effects on the ground and in the airspace.

Reinvigorated R&D and refined technology implementation strategies

balancing near-term technology development and maturity needs with

long-term cutting-edge research help aircraft keep pace with changing

environmental requirements [6].”

The Concept of Operations assumes that technologies focused on improving

aircraft performance with respect to noise, fuel burn, and emissions will be

developed and integrated into the fleet at a rate that, combined with more efficient

2
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flight management, will mitigate increasing demand on the aviation infrastructure.

Policymakers would then be able to enact more aggressive regulations to ensure

reductions in community noise, climate effects, and emissions that affect local air and

water quality are achieved. Enacting these aggressive regulations would also serve to

alleviate community concerns about land use and runway development, which would

in turn allow airports and the air transportation system to increase its capacity.

While the Concept of Operations is an initiative by the United States, the

international community has come to similar conclusions concerning the necessary

methods for achieving reductions in environmental impacts of aviation. An example

of this conclusion is represented in the International Air Transport Association

(IATA) schematic roadmap for CO2 emission reduction displayed in Figure 1 [7].
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Figure 1: IATA Schematic CO2 Emissions Reduction Roadmap [7]

This schematic reflects IATA’s four-pillar strategy to help achieve the aviation

industry’s ambitious emission reduction goals. The four pillars are as follows:

• Investment in new technology (more efficient airframe, engines and equipment,

sustainable biofuels, new energy sources)
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• Efficient operations (drive for maximum efficiency and minimum weight)

• Effective infrastructure (improve air routes, air traffic management and airport

procedures)

• Positive economic measures (carbon offsets, global emissions trading)

Both of these entities agree that new technologies are the most significant enabler

of sustainable growth for the aviation industry. However, to properly assess the

capability of a future fleet of aircraft to achieve certain goals and thresholds of

environmental impact, a framework must be developed that can objectively analyze

the impact of technologies and the influence of evolving airport infrastructures.

In an effort to reflect on JPDO and IATA’s proposals for mitigating the

environmental impacts of aviation, Chapter 1 focuses on three areas related to this

problem:

1. Environmental policy-making in the context of aviation

2. Technology development programs designed to protect the environment while

enabling sustained aviation growth

3. Airport development and land use planning to improve capacity constraints at

major airports

Exploring each of these areas helps to motivate the objective of this research by

providing some context and identifying current limitations and capability gaps.

1.1 Environmental Policy

The purpose of environmental policy-making is to develop laws and regulations that

allow for sustainable growth of the industry while simultaneously protecting the health

and well-being of the local, national, or global community. In the area of civil aviation
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environmental protection, these regulations set limits on harmful pollutants that are

produced by aircraft, which includes emissions from the combustion of hydrocarbons

as well as unwanted and disruptive noise. While each country establishes its own

laws and regulations through their respective regulatory bodies, civil aviation is

by its nature a global enterprise and requires a global initiative to mitigate the

impacts of increasing aviation demand. For this reason, the United Nations (UN)

created the International Civil Aviation Organization (ICAO) in 1945 to govern

standards for aviation worldwide. ICAO’s environmental efforts were originally

divided between the Committee on Aircraft Engine Emissions and the Committee

on Aircraft Noise, but these committees were simultaneously superseded in 1983 by

the formation of the Committee on Aviation Environmental Protection (CAEP).

As of 2013, CAEP consists of 23 member nations and 16 observers representing

other nations and organizational bodies that have an interest in its work, such

as the International Coordinating Council of Aerospace Industries Associations

(ICCAIA), the International Air Transport Association (IATA), and the United

Nations Framework Convention on Climate Change (UNFCCC) [8]. The committee

was established “for the purpose of assisting in the further development of Standards,

Recommended Practices and Procedures (SARPs) and/or guidance material on

aircraft noise and engine emissions” [9]. CAEP meetings take place every three

years, and in the past have alternated focus between new noise standards and new

emissions standards. At CAEP/6 in 2004, however, participants recognized that

effective mitigation strategies require a better understanding of the interdependencies

between noise and emissions and their overall impacts. This led to the identification

of the following three goals [10]:

1. To limit or reduce the impact of aviation greenhouse gas (GHG) emissions on

the global climate
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2. To limit or reduce the impact of aviation emissions on local air quality

3. To limit or reduce the number of people affected by significant aircraft noise

The latter goals have led to ongoing development of analytical tools and databases

that can account for these interdependencies and help to define effective mitigation

strategies that meet these three goals simultaneously. In the United States, the

FAA Office of Environment and Energy (AEE) worked with the US Department

of Transportation (USDOT) Volpe National Transportation Systems Center (Volpe

Center), the ATAC Corporation, Metron Aviation, and CSSI Inc. to develop the

next generation of airport analysis tool, known as the Aviation Environmental Design

Tool (AEDT) [11]. AEDT is a software system that is designed to dynamically model

aircraft performance in space and time to compute fuel burn, emissions, and noise.

Full flight gate-to-gate analyses are possible for study sizes ranging from a single flight

at an airport to scenarios at the regional, national, and global levels. AEDT replaces

the traditional public-use aviation environmental tools, such as the Integrated Noise

Model (INM) and the Emissions and Dispersion Modeling System (EDMS). AEDT

incorporates procedures and performance calculations that are similar to these legacy

tools, leveraging extensive system databases covering airports, airspace, and fleet

information that span the global nature of the aviation industry. The coefficients

in these databases are very specifically defined with respect to the standards and

algorithms on which AEDT is built. A diagram of the AEDT system structure with

all of its capabilities is shown in Figure 2 [11].

While CAEP establishes global standards for evaluating the environmental impact

of each aircraft-engine combination, the responsibility of establishing laws and

enforcing them still lies with the member nations. In the United States, The National

Environmental Policy Act of 1969 (NEPA) requires each Federal agency to disclose

to the interested public a clear, accurate description of potential environmental
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Figure 2: AEDT System Structure [11]

impacts that may result from proposed Federal actions. Additionally, these agencies

must explore reasonable alternatives to those actions and produce comparisons with

respect to these environmental impacts. Through NEPA, Congress directed federal

agencies to incorporate environmental factors in their planning and decision making

processes [12]. The Environmental Protection Agency (EPA) is the primary U.S.

government entity in charge of establishing aircraft and aircraft engine emissions

standards “for any air pollutant that could reasonably endanger public health and

welfare,” as directed by the Clean Air Act (CAA) of 1970 [13]. The CAA requires the

EPA to set national ambient air quality standards for the following six pollutants:

nitrogen oxides (NOx), sulfur oxides (SOx), carbon monoxide (CO), ozone (O3),

particulate matter (PM), and lead (Pb) [14]. When establishing aircraft engine

emissions standards, the EPA must consult with the Department of Transportation

(DOT) to ensure these regulations align with current and future aircraft technology

capabilities with appropriate consideration to compliance cost as well as any potential

negative impacts on aircraft safety. Once these standards are agreed upon, the

DOT delegates responsibility for enforcing these standards to the Federal Aviation
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Administration (FAA). The FAA ensures compliance with these regulations by

reviewing and approving certification test plans, procedures, test reports, and engine

emissions certification levels. The EPA aligns its goals with certification standards

that are developed by ICAO under CAEP [13].

Similarly in 1970, the United States Congress directed issues concerning noise

beyond aviation to the Environmental Protection Agency (EPA). Congress charged

the EPA with conducting studies regarding the “effects of noise on public health

and welfare,” which was achieved through the EPA’s Office of Noise Abatement and

Control (ONAC) [15]. Part of this study concluded that transportation and aviation

noise had negatively impacted the property values of over 44 million people, which

led to the establishment of noise emission standards via the Noise Control Act of

1972 [16]. The document, among other achievements, codified the measurements for

the impact of community noise, established through metrics generally referred to as

equivalent (or equivalency) sound metrics [17]. These are referred to as equivalency

metrics because they “average the intensity [of sound] over a given period of time

[18].” Different government agencies, however, disagree about the noise-level threshold

which corresponds to significant noise exposure. Additionally, the metrics used for

aircraft and engine certification are different from those used to determine population

exposed to significant noise.

Determining the interdependencies between noise and emissions can become

convoluted given the variety of noise metrics and the different emissions species from

hydrocarbon combustion. Given the United States’ member status in CAEP, the

EPA and the FAA generally align their goals with that of ICAO. Thus, the metrics

should support the three goals concerning greenhouse gas emissions, local air quality,

and significant noise exposure. These metrics will be discussed in detail in Chapter

2.
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1.2 Technology Development

The challenge of maintaining and improving mobility in the face of increasingly

congested airspace while simultaneously addressing aviation’s environmental

footprint is the main driving force for new technology development in aviation. This

has led to strategic aviation technology programs in the United States, Europe,

and other countries with emerging aeronautics industries. These programs are

often supported by governments and structured in partnerships between industry

and research establishments [7]. In Europe, the Clean Sky JTI (Joint Technology

Initiative) was born in 2008 and represents a unique Public-Private Partnership

between the European Commission and industry. This initiative is made up of six

Integrated Technology Demonstrators (ITDs), including active wing technologies

and new aircraft configurations, lightweight and efficient cores, and novel engine

designs, just to name a few [19]. This initiative, combined with the Single European

Sky ATM Research (SESAR) for developing advances in air-traffic management, is

funded under the European Union’s Framework Program to meet the goals outlined

by the Advisory Council for Aeronautical Research in Europe (ACARE) in their

Strategic Research Agendas [7, 20, 21]. Some of the short-term environmental goals

of these agendas, combined with the more long-term goals defined in the Strategic

Research and Innovation Agenda (SRIA), are outlined in the Vision 2020/Flightpath

2050 goal set in Table 1 below [22, 23]:

Table 1: Vision 2020/Flightpath 2050 Environmental Goals

Goals Technology Benefits Relative to a
Year 2000 Reference Aircraft

Vision 2020 Flightpath 2050

CO2 reduction per passenger km −50% −75%
NOx reduction −80% −90%
EPNLdB noise reduction −50% −65%
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In Table 1, EPNLdB stands for Effective Perceived Noise Level in decibels, which

is a metric that takes into account the duration of the signal and the presence of pure

tones to better approximate the human response to unwanted noise [24]. It should be

noted that a 50% reduction in perceived noise is equivalent to a reduction of 10-dB

according to the conventions of a decibel scale and human perception of sound. The

focus of these technology programs is to identify promising technologies and advance

their maturity levels such that their benefits can be realized within the time-frame

specified [7].

In the United States, aviation technology research goals are established by the

National Aeronautics and Space Administration (NASA). NASA defines its goals

with respect to current aircraft at generation N, with a 3-tiered goal structure referred

to as N+1, N+2, and N+3 generations. The goals for each of these generations are

defined in Table 2 [25].

Table 2: NASA N+ Goals

Goals N+1 = 2015 N+2 = 2020 N+3 = 2025

Reference
Configuration

Single Aisle Large Twin
Aisle

Single Aisle

Technology Benefits

Cumulative Noise −32 dB −42 dB −52 dB
LTO NOx emissions −60% −75% −80%
Aircraft Fuel Burn −33% −50% −60%

In Table 2, cumulative noise refers to the sum of EPNLdB values at three locations

around the runway that are used for aircraft noise certification (flyover, lateral, and

approach) [26]. LTO NOx refers to NOx emissions during the Landing-Takeoff cycle,

which generally comprises emissions below an airfield equivalent altitude of 3,000

ft, including taxi-in and -out, take-off, climb-out, and approach-landing [27]. The
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N+1 goals are pursued primarily by the FAA’s Continuous Lower Energy Emissions

and Noise (CLEEN) technology program, with support from NASA. The CLEEN

program is a NextGen effort to accelerate development and commercial deployment

of environmentally promising aircraft technologies and sustainable alternative fuels

[28]. Because of the short time-frame, this program tends to focus on technologies

that can either be retrofitted to existing aircraft in the fleet or quickly integrated into

the manufacturing of the next generation of conventional configuration aircraft. The

N+2 goals are pursued primarily by NASA’s Environmentally Responsible Aviation

(ERA) project. This project explores and documents the feasibility, benefits, and

technical risk of vehicle concepts and enabling technologies to reduce aviation’s

impact on the environment [29]. Because of the increasingly aggressive goals of

the N+2 generation, ERA tends to focus on more advanced technologies with

particular emphasis on unconventional aircraft configurations such as the hybrid

wing body (HWB) due to promising reductions in fuel burn, emissions, and noise

[30]. The N+3 goals are pursued via NASA’s Subsonic Fixed Wing (SFW) program,

with a focus on low-maturity technologies as well as advanced analysis techniques

[31]. Like their European counterparts, these programs are designed to advance

the maturity levels of promising technologies. The technology advancement goals

for each program are defined in terms of Technology Readiness Levels (TRLs), a

systematic metric/measurement system that supports assessments of the maturity of

a particular technology and the consistent comparison of maturity between different

types of technology [32]. The values range from lowest maturity at TRL 1 to highest

maturity at TRL 9, as demonstrated in Figure 3 [33].

The CLEEN program focuses on advancing technologies from TRL levels of 3-4,

corresponding to a proof-of-concept or a demonstration in a laboratory environment,

to TRL levels of 6-7, corresponding to a developmental stage and a demonstration

in a relevant environment [28, 32]. The ERA program similarly aims at advancing
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Figure 3: NASA Technology Readiness Level (TRL) Meter [33]

technologies to a systems integration level (TRL level of at least 6), while the SFW

program focuses on achieving lower maturity TRL levels between 2-4 with the goal

of infusing these technologies into the fleet much further in the future [34].

These program goals are stated with respect to various reference vehicles

with vehicle-level metrics. The European goals do not cite a specific vehicle,

instead referring to single aircraft technology benefits over year 2000 technology [7].

NASA’s N+1 and N+3 goals are referenced against a single-aisle reference vehicle,

specifically a Boeing B737-800 aircraft with CFM56-7B engines, whereas the N+2

goals are referenced against a large twin-aisle reference vehicle, specifically a Boeing

B777-200 aircraft with GE90 engines [25]. While these aircraft represent the current

state-of-the-art, proper assessment of fleet-wide improvements due to technology

infusion requires aggregating the technology impact on each currently in-production

aircraft according to forecast schedules of operations [30]. The previously mentioned

reference vehicles do not fully represent the diversity of the fleet, thus achieving the
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specific goals outlined by NASA and ACARE may not yield the system-level results

anticipated. In reality, the fleet is made up of several thousand aircraft, with hundreds

of unique airframe-engine combinations. Typical fleet-level analyses, such as the

inventory studies conducted by the John A. Volpe National Transportation Systems

Center using AEDT, rely on extensive databases that catalog the performance of

every aircraft-engine combination in the fleet and link this performance to operational

schedules [35]. These databases are validated against manufacturer provided data,

but this type of information is unavailable for future vehicles infused with future

technologies that are currently at low TRL levels, and thus projections rely on

assumptions of improved performance that are not connected to specific technologies.

Simultaneous quantification of these technology impacts and the interdependencies

of the environmental metrics at the fleet level would require modeling technologies at

the vehicle-level for every unique aircraft-engine combination and then aggregating

to the fleet level, but this would be time-consuming and computationally expensive.

A common approach when forecasting the impact of future technology vehicles

is to simplify the fleet into “generic vehicles” that represent the performance of

various classes of aircraft. An example of this is included in the World Fleet

Modeling chapter of the IATA Technology Roadmap 2013, where average vehicles

with generic technologies are defined for each of the CAEP/8 defined seat classes

[7]. The performance of these generic vehicles are simulated in a vehicle design

tool capable of modeling impacts of future technologies. However, seat classes are

defined based on internal seat configurations rather than vehicle performance, and

thus a single airframe-engine combination may be classified in multiple classes despite

the fact that the vehicle’s performance changes very little due to these different

seating configurations. Furthermore, these generic vehicles are designed to average

the fuel-burn and emissions within each class without any consideration for noise,

making it difficult to gauge the impact of technologies on fuel-burn, emissions, and
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noise simultaneously.

This work proposes an average generic vehicle approach with classification based

on vehicle performance rather than seating configurations. The fleet is categorized

based on the performance of each aircraft-engine combination with respect to

the metrics defined in Chapter 2. The method for defining these average generic

vehicles also becomes more complicated when trying to include noise due to the

airport-dependent nature of the noise metrics. A novel method for finding average

generic vehicles that include average noise will be formulated in Chapter 3.

1.3 Airport Development and Land Use Planning

As mentioned previously, new runways present the most extensive capacity change

that can occur at an airport. The capacity effect of new runways depend most on

(a) orientation and dependence in relation to other runways (i.e., parallel, converging,

intersecting), and (b) expected runway use (i.e., arrivals, departures, or mixed mode).

With a new runway project, there may be a need for convincing evidence that

the benefit of the capacity improvement is justified because it may have adverse

environmental effects [36]. The FAA requires an Environmental Assessment (EA) to

unconditionally approve an Airport Layout Plan (ALP) depicting a proposed runway

to determine if the project will have significant impact on noise, air quality, water

quality, or historical artifacts [12]. If the environmental impact is determined to

be significant, an Environmental Impact Study (EIS) must be prepared and made

available to the public [37]. Community opposition due to concerns about aviation

noise and other environmental impacts can arise during the public outreach required

by federal law when federally-funded airport expansion projects are proposed and can

contribute to project delays at some airports, with the median time for completion

of a new runway increasing from 10-years to 14-years as a result of these delays [38].
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Currently, aircraft noise is the single most significant local objection to airport

expansion and construction [39]. As the national aerospace system becomes

increasingly capacity-constrained it will be ever more important to remove the limits

introduced by community noise impacts. The federal government often provides some

funding for local abatement, such as sound insulation and land-purchases to reduce

future concerns, but local government decisions that allow communities to expand

land use into these noise-sensitive areas erode these noise reduction gains, according

to a 2004 FAA report to Congress [40]. The United States General Accounting

Office (GAO) predicts that future increases in air traffic and changes in aircraft flight

paths could lead to more noise complaints from the community [39]. A balanced

approach is necessary to mitigate these complaints in the face of increasing traffic,

with operational procedures providing the greatest near-term benefits, and reductions

in source noise (airframes and engines) being required in the long-term for further

reductions. Continuing policy efforts to encourage appropriate land use will be

required throughout [40].

Although noise is the primary environmental constraint on airport operations

and expansion, many airports either put local air quality concerns on equal footing

with noise or anticipate they will be on equal footing soon. Emissions of nitrogen

oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (UHC) and particulate

matter (PM) from a variety of airport sources contribute to local air quality

deterioration, resulting in human health and welfare impacts [40]. Although some

airports may be required to mitigate emission increases arising from projects covered

by NEPA and the CAA, a GAO study in 2003 indicated that most emission reduction

actions are done voluntarily. However, aviation industry representatives as well as

federal and state officials testified before the House of Representatives that new air

quality standards, combined with the boost in emissions expected from increases in

air travel, could cause airports to be subject to more emission control requirements
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in the future [41]. This may put another damper on attempts to expand airports and

build new runways.

In 2003, the FAA convened a team to begin the Future Airport Capacity

Task (FACT). The team was led by the FAA’s Airports organization (ARP) and

included representatives from the Air Traffic Organization (ATO) and the MITRE

Corporation’s Center for Advanced Aviation System Development (CAASD). FACT1

was an assessment of the future capacity of the nation’s airports and metropolitan

areas, FACT2 was a follow-up study in 2007; the FACT3 study was published in

January of 2015. The goal of the FACT studies was to determine which airports and

metropolitan areas have the greatest need for additional capacity. Each FACT study

included detailed analysis of 56 commercial service airports selected from a larger

set of 291 commercial service airports based on potential capacity issues [42]. The

FACT3 analysis includes current aircraft fleet mix projections, updated NextGen

planning, and modeling of gate and surface constraints on airport capacity [43]. This

study found that while NextGen provided incremental benefits, the demand growth

at many airports projects to outpace these increases in capacity. The study identified

10 airports (listed in Table 3) that could potentially be capacity constrained by 2030

if not earlier. Of these 10 airports, only Philadelphia International Airport (PHL)

has a plan for building a new runway that could potentially alleviate airport capacity

by 2030.
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Table 3: FACT3 Capacity Constrained Airports

Airport Code 2011 2020 2030

Hartsfield-Jackson Atlanta International Airport ATL ✗ ✗ ✗

Charlotte Douglas International Airport CLT ✗

Newark Liberty International Airport EWR ✗ ✗ ✗

George Bush Intercontinental Airport IAH ✗

John F. Kennedy International Airport JFK ✗ ✗ ✗

McCarran International Airport LAS ✗

LaGuardia Airport LGA ✗ ✗ ✗

Philadelphia International Airport PHL ✗ ✗ ✗1

Pheonix Sky Harbor International Airport PHX ✗

San Francisco International Airport SFO ✗2 ✗

1 New runway planned may mitigate delays by 2030
2 NextGen implementation may mitigate delays in 2020

This analysis focused solely on capacity constraints and delays, and did not take

into account future noise restrictions or emission control requirements. This may be

due to the confidence that JPDO initiatives will advance technologies and operating

procedures enough that these environmental constraints will never be realized.

Runway placements and orientations would most likely be limited due to surrounding

populations and noise-sensitive areas. To avoid these areas, departure and approach

flight tracks with sharp turns may be employed; this creates a penalty in terminal

area fuel burn and emissions. Advanced technologies for fuel burn and emission

reduction may be able to mitigate these penalties. Alternatively, noise reduction

technologies may allow for the construction of new runways without requiring these

sharp turning flight tracks for noise abatement. A method for rapidly evaluating

community noise exposure for different runway/airport configurations in conjunction

with a fleet of technology-infused aircraft will be discussed in more detail in Chapter 4.
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1.4 Summary of Motivation

The final goal of this research is to outline a framework for evaluating the future state

of aviation and its relative impacts on the environment. Since this type of analysis

concerns future technologies that are still under development, the framework must

hinge on modeling and simulation. Thus, the objective of this research is as follows:

Research Objective: To develop a framework for modeling relevant

environmental performance metrics and objectively simulating the future

environmental impacts of aviation given the evolution of the fleet, the development

of new technologies, and the expansion of airports.

This framework should be flexible enough to evaluate multiple scenarios against

each other such that promising mitigation strategies can be down-selected and

explored in detail. Given the computational expense typically associated with high

fidelity modeling and simulation, this methodology should leverage lower fidelity

methods. By exchanging fidelity for computational speed, more scenarios can be

evaluated. In this way, the framework will serve as a screening capability, and

the most promising scenarios could be re-evaluated using more computationally

demanding high fidelity models. Thus, the overarching hypothesis for this research

is as follows:

Overarching Hypothesis: By exchanging fidelity for computational speed,

a screening-level framework for assessing aviation’s environmental impacts can be

developed to observe new insights on fleet-level trends and inform environmental

mitigation strategies.

An overview of this framework is displayed in Figure 4. Fidelity is reduced

18



www.manaraa.com

by simplifying the fleet to a handful of per class average generic vehicles that are

optimized to match the fleet-level aggregate results of a diverse fleet for a given

baseline schedule of operations. This simplification reduces the combinatorial nature

of the fleet-level problem, which becomes even more complicated when exploring

multiple technology scenarios. The generic vehicles can serve as virtual testbeds for

modeling technology infusion, and the performance of these technology vehicles can

be linked to a model of fleet evolution to conduct bottom-up integrated fleet-level

analysis of multiple environmental metrics simultaneously. Flight schedules from

these simulations can also be extracted to rapidly explore multiple runway locations.

If these explorations can be linked to a simple method for quantifying population

distribution around an airport, the contour areas and population exposure counts

for every possible runway location can be quickly compared and the ideal locations

can be identified.

Figure 4: Overview of Proposed Framework

Chapter 2 establishes the relevant environmental impact metrics. Background

is provided on existing methods for fleet-level analysis and capability gaps are
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identified. These capability gaps and technical challenges lead to research questions

and hypothesis statements. In Chapter 3, approaches for addressing these technical

challenges are formulated. These approaches center on exchanging fidelity for

computational speed, including a method for defining performance-based average

generic vehicles that include average noise as well as a method for incorporating

population counts into an existing rapid noise tool. Chapter 4 demonstrates the

implementation of these methods in an effort to answer the research questions

and support the hypothesis statements. Chapter 5 demonstrates some examples

of fleet-level capabilities that leverage the average generic vehicle and population

methods. These capabilities include fleet-level analysis under various technology

and replacement scenarios as well as a low-fidelity environmental assessment of new

runway locations. Chapter 6 summarizes the contributions of this work and outlines

potential future work that builds upon the methods and analysis presented in this

research.
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CHAPTER II

BACKGROUND AND TECHNICAL CHALLENGES

Chapter 1 introduced the overarching research objective and an overview of the

proposed framework. This chapter begins with literature review on the relevant

metrics for quantifying the environmental impacts of aviation. Once these metrics

are established, a review of previous work on fleet-level modeling is included,

with particular focus on Becker’s generic vehicle methodology [44]. Additionally,

a rapid airport-level noise tool developed by Bernardo and current best practices

for quantifying population exposure are reviewed. The modeling and simulation

requirements associated with integrating the fleet-level analysis for each of the

environmental impact metrics are formulated.

The generic vehicle methodology hinges on reducing the diversity of the fleet

to a few representative classes, and thus the actual aircraft in the fleet should be

intelligently assigned to a small subset of classes. The drawback of traditional seat

capacity based groupings is discussed, which motivates the need for a more rigorous

multiclass classification method. It is proposed that class assignments should be

made with the goal of reducing in-class variability with respect to the relevant

metrics, and this can be accomplished through the use of statistical techniques.

The exclusion of community noise exposure from Becker’s formulation represents a

capability gap, and the airport-dependent nature of the noise metrics necessitates a

modification of Becker’s approach centered on accuracy at each airport as opposed

to just cumulative metrics across all airports. In order to trace the influence of

different sources of operational complexity on the generic vehicle designs, a series of

validation tests of sequentially increasing complexity is suggested. Given that the
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generic vehicles must balance accuracy for multiple metrics simultaneously, these

tests must be formulated as multiobjective optimization problems that can identify

a set of Pareto optimal aircraft for each class rather than a single optimal solution.

The inability to rapidly compute population exposure counts is identified as another

capability gap. An approach that conforms to Bernardo’s rapid noise computation

method is proposed to address this gap.

2.1 Review of Prior Work

Chapter 1 cited a few goals by various US and European technology programs, but

a variety of different metrics were included in these goals. A decomposition of the

CAEP goals helps to define the relevant environmental impact metrics, and previous

methods for quantifying these metrics are reviewed.

2.1.1 Environmental Impact Metrics

As discussed in Chapter 1, the need to capture the interdependencies between

noise and emissions and their overall impacts led CAEP to delineate three specific

goals. Each of these goals are discussed in more detail and a final list of relevant

environmental performance metrics are selected.

2.1.1.1 Greenhouse Gas (GHG) Emissions

GHGs are gases that trap heat in the atmosphere via the cycle demonstrated in

Figure 5. While some incoming solar radiation is reflected by the Earth’s atmosphere,

some of it is able to penetrate and warm the Earth’s surface, where it is converted to

heat and emitted as infrared radiation. Some of this infrared radiation escapes the

Earth’s atmosphere, but as the concentration of GHGs increases so does the amount
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of radiation absorbed and re-emitted, leading to increased surface and tropospheric

temperatures [45].

Figure 5: The Greenhouse Effect [45]

GHGs species’ contributions to changes in the Earth’s energy budget are quantified

in terms of radiative forcing (RF), a measure of the change in energy flux (typically in

Watts per meter squared) due to changes in these GHGs. Positive RF leads to surface

warming, whereas negative RF leads to surface cooling. The Intergovernmental Panel

on Climate Change (IPCC) Working Group I’s list of major greenhouse gases and

their relative contributions to RF relative to levels in the year 1750 is shown in Figure

6 [46].

The “well-mixed” species feature uniform distributions throughout the

atmosphere, regardless of the location of the emission source due to longer
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atmospheric residence times, whereas the concentrations of “short-lived gases” tend

to vary by location. Figure 6 shows that CO2 is the primary anthropogenic species

contributing to a net positive RF. For this reason it is often used as a reference when

comparing relative influences of GHGs. The two most important characteristics of a

GHG in terms of climate impact are how well the gas absorbs energy (preventing it

from immediately escaping to space), and how long the gas stays in the atmosphere

[47]. The Global Warming Potential (GWP) for a gas is a measure of the total energy

that a gas absorbs over a particular period of time (usually 100 years), compared to

carbon dioxide [48]. As a reference, CO2 has a GWP of 1, with an atmospheric lifetime

of 50-200 years. Methane (CH4), by comparison, has a GWP of 21, but only has an

atmospheric lifetime of 12 years. Nitrous oxide (N2O) has a GWP of 310 with an
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atmospheric lifetime of 120 years, but the relative concentrations in the atmosphere

are much smaller than that of CO2 [47]. Thus, CO2 is the GHG that accounts for the

greatest impact to current and historical warming trends [49].

CO2 emissions typically demonstrate direct correlations with the amount of fuel

burned by an aircraft because CO2 is a direct product of hydrocarbon fuel combustion,

as evidenced by the following simplified global kinetic mechanism [50]:

CxHy +
(

x+
y

4

)

O2 → xCO2 +
y

2
H2O (1)

Therefore, an aircraft that reduces the amount of fuel required to complete a

mission will likely demonstrate a reduction in CO2 emissions as well. Equation (1)

only lists the products of ideal combustion, but in reality there are often many

other species that are produced due to some incomplete combustion. The relative

concentrations of these products also change depending on the operating regime. A

list of typical aircraft engine combustion products and relative concentrations is shown

in Table 4 [51].

In Table 4, ppmv is parts per million by volume, such that one µl of the gas in 1

liter of air is equal to 1 ppmv. The term ppmw refers to parts per million by weight

(ppbw is parts per billion by weight), and ppmC refers to parts per million by carbon.

The unit ppmC is calculated by multiplying the concentration of the compound in

ppmv by the number of carbon atoms in that compound. This unit is typically

used for reporting ambient hydrocarbons because the number of carbon atoms is a

very crude indicator of the total reactivity of a group of hydrocarbon compounds

[52]. Comparing the low-power and high-power concentrations in Table 4 shows that

combustion is less efficient at the idle power setting as this represents an off-design

condition typically corresponding to landing procedures. Thus, the concentrations of

CO2 and H2O are lower while the concentrations of CO, total hydrocarbons (such as

CH4), and partially oxidized hydrocarbons are higher.
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Table 4: Engine Combustion Products and Typical Concentrations

Approximate Concentrations

Type Species Low-power (idle) High-power

Air
N2 77% 77%
O2 17.3-19% 13-16.3%
Ar 0.9% 0.9%

Complete Combustion
Products

H2O 1.4-2.4% 3-5%
CO2 1.4-2.4% 3-5%

Incomplete
Combustion Products

CO 50-2000 ppmv 1-50 ppmv
Total HCs 50-1000 ppmC 1-20 ppmC
Part. Ox. HCs 25-500 ppmC 1-20 ppmC
H2 5-50 ppmv 5-100 ppmv
Soot 0.5-25 ppmw 0.5-50 ppmw

Nonhydrocarbon Fuel
Components

SO2, SO3 1-5 ppmw 1-10 ppmw
Metals, Metal Oxides 5-20 ppbw 5-20 ppbw

Oxides of Nitrogen NO, NO2 5-50 ppmv 50-500 ppmv

Cross-referencing Table 4 with Figure 6, it becomes clear that tracking CO2

will be the most significant indicator of aviation’s contribution to the well-mixed

GHG emissions. While methane is also a significant contributor to RF amongst the

well-mixed gases, the relative concentrations of CH4 emissions are small, especially

during the higher-power cruise phase of flight that accounts for the majority of an

aircraft mission.

Of the short-lived gases listed in Figure 6, the most significant species with respect

to aircraft engine emissions are the nitrogen oxides (NOx), which includes nitric

oxide (NO) and nitrogen dioxide (NO2). These emissions are produced when air

passes through high temperature and high pressure combustion, as is common in

the combustors of jet engines. The nitrogen and oxygen concentrations in the air

combine to form these NOx gases, with these concentrations increasing when the

engines operate at high-power [53]. NOx gases have competing effects with respect to

RF. These emissions in the upper troposphere act as an indirect GHG by causing a

short-term increase of ozone (O3) which is an important greenhouse gas. This increase
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in O3 is a result of the following chemical mechanism [54]:

OH + CO → HO2 + CO2 (2)

HO2 +NO → NO2 +OH (3)

NO2 + hv → NO +O(3P ) (4)

O(3P ) +O2 → O3 (5)

Where:

hv = photon from sunlight

O(3P ) = Oxygen atom in ground state

This short term increase is caused by nitric oxide (NO) gases competing for

hydroperoxyl (HO2) radicals, a species that typically eliminates atmospheric O3.

With less HO2 radicals to eliminate O3, the level of O3 increases and, consequently,

so does the amount of energy retained by the atmosphere. Additionally, the

reaction represented in Equation (3) produces nitrogen dioxide (NO2), which in turn

participates in net photochemical O3 production via Equations (4) and (5). On a

longer scale, emissions of NOx lead to reduced levels of methane (CH4), which is

the second-most significant GHG after CO2 [49]. This relationship occurs due to the

increase in hydroxyl (OH) radicals via Equation (3). CH4 is one of the main reactants

for the OH radical, which is the primary oxidant in the troposphere. Hence, CH4

controls the abundance of OH in the troposphere. Oxidation of CH4 leads to O3

production due to the increasing production of carbon monoxide molecules that in

turn react with the OH radicals in Equation (2). In addition, oxidation of CH4 in the
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presence of sufficient concentrations of NOx leads to further production of OH and,

hence, acts as an amplifier of HOx species [55]. Therefore, NOx emissions in the upper

troposphere contribute both to negative RF mechanisms through its destruction of

atmospheric methane as well as positive RF via its contribution to O3 production. In

the stratosphere, NOx emissions actually serve to deplete O3 by the following chemical

mechanism [56]:

O3 +NO → NO2 +O2 (6)

NO2 +O → NO +O2 (7)

NO2 +O3 → NO + 2O2 (8)

Both Equations (6) and (8) represent O3 sinks. These reactions are more common

in the stratosphere because of the larger concentrations of O3, as demonstrated in

Figure 7 [57]. The peak in O3 concentration in the stratosphere, commonly referred

to as the “ozone layer”, reflects much of the incoming solar radiation. Depletion of

the stratospheric O3 thus increases the amount of incoming radiation, leading to net

positive RF. Commercial aircraft typically operate in the upper troposphere and lower

stratosphere, but the future commercial fleet may feature commercial supersonic jets

that operate at higher stratospheric altitudes. Therefore, an increase in supersonic

flights would increase the positive RF from aircraft engine NOx emissions.

The combination of all of these reactions make it difficult to ascertain the exact

impact of NOx emissions on RF and climate change, which is why the level of

confidence in the impact of these emissions is listed as medium in Figure 6. The

potential impact, however, suggests a need to track NOx emissions, especially during

a high-altitude cruise.

In addition to the above species, a substantial part of the aviation climate impact

may be due to aviation induced cloudiness including contrail cirrus, changes in
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Figure 7: Ozone Concentration by Altitude [57]

cirrus properties, and cirrus occurrences due to soot emissions [58]. These contrail

formations form under favorable meteorological conditions and sometimes depend

on concentrations of soot particles in the upper-troposphere [59]. This implies that

contrail formation will vary regionally and seasonally, which greatly increases the

uncertainty related to its impact on the climate. Given this uncertainty, the inclusion

of contrails was scoped from this research, but as modeling of contrails improves

and the impacts are better understood they should be included in future problem

formulations connecting aviation activities to changes in radiative forcing.

Therefore, the primary metrics for quantifying aviation’s contribution to GHG

emissions should be the aggregate CO2 and aggregate NOx emissions by all aircraft;

this should include emissions for the entirety of every flight. Currently an aircraft
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CO2 emission standard does not exist [60]. In October 2013, ICAO reached a

preliminary agreement to develop global rules by the end of the decade that would

control airline emissions, partially as a compromise to the European Union’s stance

on levying carbon fees on airlines operating in European airspace [61]. For the near

term, fuel burn can be used as a surrogate measure of carbon dioxide emissions until

a CO2 emission standard is defined, as these values are directly related [60]. This is

consistent with the NASA N+ goals from Table 2, which do not cite any targets with

respect to CO2 specifically but rather express goals with respect to aircraft fuel burn.

Because CO2 is a well-mixed species, the metric of interest is total mission fuel burn,

which is dominated by fuel burn during the cruise segment. Tracking terminal area

fuel burn should be considered as well since this serves as a good indicator of vehicle

performance during the more transient phases of the mission, including takeoff,

climb-out and approach-landing conditions when engines are operating near idle.

Thus, the metrics that shall be used for quantifying aviation’s contribution to GHG

emissions for this study are total mission fuel burn and total mission NOx emissions.

It should be noted that ICAO does not currently define a standard for NOx emissions

in the upper atmosphere because these emissions are difficult to measure directly

for certification tests [62]. However, experiments have been performed to investigate

the relationship between the engine emission index of NOx, the compressor outlet

temperature, and the engine pressure ratio. These experiments have led to regression

equations that can be used to estimate total NOx emissions given knowledge of the

latter engine specifications [63].

2.1.1.2 Local Air Quality

While there is much uncertainty about the net impacts of NOx emissions in the upper

atmosphere, the contribution of these emissions on the ground and in the terminal area
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Figure 8: Landing-Takeoff (LTO) Cycle Definition [65]

to reduction in local air quality is much better understood [64]. ICAO has established

and regularly updates emissions standards for terminal-area nitrogen oxides (NOx).

More specifically, these standards are defined for the Landing-Takeoff (LTO) cycle,

which is represented pictorially in Figure 8 [65]. When CAEP proposes new changes

to existing standards, the changes are usually cited with respect to a reference engine

with an overall pressure ratio (OPR) of 30, but due to the direct relationship between

NOx and OPR, CAEP defines standard curves as a function of OPR. An example

of CAEP/6 (2004) and CAEP/8 (2010) standards for higher thrust engines is shown

in Figure 9 [62]. Currently, the EPA has adopted these international standards with

the CAEP/8 standards officially enacted for any engine introduced after January 1,

2014 [62]. Previously manufactured engines are held to the CAEP/6 standard. The

adoption of these standards explains why NASA defines its local air-quality goals

with respect to LTO NOx, as seen in Table 2.

When NOx and volatile organic compounds (VOCs) in the terminal-area react

in the presence of sunlight, they form photochemical smog, a significant form of

air pollution. Children, people with lung diseases such as asthma, and people who

work or exercise outside are particularly susceptible to adverse effects of smog, such as
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Figure 9: CAEP LTO NOx Emissions Standards

damage to lung tissue and reduction in lung function [66]. Additionally, when nitrogen

dioxide (NO2) reacts with atmospheric moisture, the following chemical mechanism

contributes to increasing occurrences of acid rain [67]:

2NO2 +H2O → HNO2 +HNO3 (9)

3HNO2 → HNO3 + 2NO +H2O (10)

4NO + 3O2 + 2H2O → 4HNO3 (11)

Equation (9) shows how nitrogen dioxide reacts with water to form nitrous acid

(HNO2) and nitric acid (HNO3). The nitrous acid further decomposes as shown in

Equation (10), which generates more nitric oxide and water molecules to react with

atmospheric oxygen to further increase nitric acid levels, as shown in Equation (11).

Nitric acid increases the acidity in rainwater, which can degrade the pH balance of
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soil, cause a decline in local plant and animal life and even damage infrastructure

built from stone.

While particulate matter, carbon monoxide, and other minor species also

contribute to degradation of local air-quality, national and international agencies

focus attention on terminal area NOx as evidenced by its inclusion in both the

ACARE goals in Table 1 and the NASA N+ goals in Table 2. This is because

considerable progress has been made in the past few decades in reducing unburned

hydrocarbons and carbon monoxide emissions. Much of these reductions are due

to improvements in combustor efficiencies, as the latter species are products of

incomplete combustion that are more prevalent during off-design low-power engine

operation, but NOx emissions have proven more difficult to control considering their

increased concentration during high-power engine operation. Therefore, LTO NOx

shall be the metric for quantifying aviation’s impact on local air-quality. In order to

gain transparency for these emissions and how they correspond to each phase of an

aircraft mission, the LTO cycle shall be disaggregated into departure and approach

emissions (each including runway taxiing).

2.1.1.3 Community Exposure to Significant Aircraft Noise

Fuel burn and emissions are easily quantified and compared with units of mass or

concentration, but measuring noise can be complicated due to its spatial and temporal

variations. As a result, many different noise metrics exist. In the ACARE and

NASA N+ goals in Tables 1 and 2, respectively, targeted improvements in noise

are stated with respect to Effective Perceived Noise Level in decibels (EPNLdB).

The goals choose this perception-corrected metric because it is commonly used by

agencies (including the FAA) for engine certification. EPNLdB is derived from

the Tone-corrected Perceived Noise-Level (PNLT) metric that uses a complicated
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formula for adjusting noise values by calculating a correction factor as a function

of sound-pressure-levels (SPL) in each of the 1/3rd-octave frequency bands between

80-Hz and 10-kHz. These tone-correction factors are dependent on the frequency of

the tone and its excess over the level of noise present in the adjacent 1/3rd-octave

frequency bands, approximately capturing the presence of piercing pure tones that

can be perceived as a greater nuisance. PNLT is measured in units of TPNdB [68].

EPNLdB expands upon PNLT by correcting for duration as follows [69]:

D = 10 log10

[

2d
∑

k=0

(

10
PNLT (k)

10

)

]

− PNLTmax − 13 (12)

EPNLdB = PNLTmax +D (13)

Where:

PNLTmax = max Tone-corrected Perceived Noise Level of the PNLT time history

D = duration correction factor

d = time interval during which the level exceeds PNLTmax − 10-TPNdB

k = index of the time step

As mentioned in Chapter 1, the NASA N+ goals in Table 2 specifically target

reductions in cumulative EPNLdB, which refers to three locations around the runway

that are used by the FAA for engine noise certification. These locations are depicted

in Figure 10 [70]. The community and sideline reference points characterize departure

noise, whereas the approach reference point characterizes noise during approach

procedures. The community reference point (also referred to as flyover, takeoff,

centerline, or cutback location) is located along the extended runway centerline

at a distance of 21,325 ft (6,500 m) from the start of the takeoff roll [26]. The
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sideline reference point has a fixed lateral distance of 1,476 ft (450 m) from the

runway centerline, but the longitudinal location is determined by the maximum noise

observed along the sideline reference axis and varies with each aircraft [26]. This

peak typically occurs after the aircraft has lifted off and once lateral attenuation has

diminished [70]. The approach reference point is located on the extended runway

centerline at a distance of 6,562 ft (2,000 m) from the runway threshold [26]. The

cumulative EPNLdB is the sum of the EPNLdB measurements at each of these

locations, which is commonly used by industry as well as the NASA N+ goals [70].

Lateral 

Reference

Approach 

Reference

Flyover (with cutback)

Reference

6500 m

(21 325 ft)

2000 m

(6562 ft)
450 m

(1476 ft)

Figure 10: EPNL Certification Reference Points [70]

These reference points provide a standard for monitoring noise from new

aircraft-engine combinations and allows the FAA to define thresholds that must be

met by new aircraft. The FAA uses standards for these reference points in a similar

manner as the LTO NOx standard described earlier, with acceptable cumulative

EPNLdB levels typically being dependent on maximum aircraft weight and number

of engines. The FAA defines different “stages” of noise compliance for classifying

aircraft according to these certification measurements, which allows them to compare

and contrast noise-levels for various aircraft and prioritize which vehicles need to be
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phased out of the fleet first [26]. These certification measurements, however, do not

provide any indication of population exposure or annoyance due to aircraft noise, and

thus another noise metric is required.

As mentioned in Chapter 1, the Noise Control Act of 1972 codified the

measurements for community noise impacts via equivalency metrics. The primary

equivalency metrics used for assessing noise exposure due to aviation are the Sound

Exposure Level (SEL) and the Day Night Level (DNL). The SEL is an equivalency

exposure metric that represents a single event by expressing, in decibels, the sound

exposure level as if the entire event occurred in one second of time. The entire pressure

signal is integrated with respect to time over the duration of the event and the decibel

level is then calculated using a reference time of unity, as follows [71]:

SELdB = 10 log10

[

1

t2 − t1

∫ t2

t1

P 2
A(t) dt

P 2
0 t0

]

(14)

Where:

P 2
A(t) = A-weighted pressure squared, as a function of time

P0 = Reference sound pressure (20 µPa)

t0 = Reference time (1 second)

t1 = Time at the beginning of the event

t2 = Time at the end of the event

In Equation (14), the term A-weighted refers to a spectral weighting scheme

that represents how humans perceive noise at different frequencies by emphasizing

sound components in the frequency range where most speech information resides.

This yields higher levels in the mid-frequency (2000 to 6000 Hz) range and lower
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levels in both low frequency and high frequency ranges [11]. Decibel measures

using A-weighting are commonly referenced with the units dBA. A semi-logarithmic

frequency plot of A-weighting is shown in Figure 11. A-weighting tends to be used

when evaluating impact of airport noise on the human population.

Figure 11: A-Weighted Adjustment Curve [11]

Given a grid of points defined around an airport runway, the SEL values for

any single event (such as a takeoff or landing) can be calculated at each grid

point. The procedure for calculating these SEL values is outlined in the Society

of Automotive Engineers Aerospace Information Report 1845 (SAE-AIR-1845) [71].

This document explicitly defines reference conditions and the manner in which aircraft

trajectories and velocities shall be calculated. Once this aircraft performance is

determined, SEL noise values at each grid point are calculated using the referenced

Noise-Power-Distance (NPD) data sets. The NPD data for a fixed-wing aircraft

consists of a set of decibel levels for various combinations of aircraft engine power
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states and slant distances from observer to aircraft. This NPD data contains source

noise from the entire aircraft, including airframe, engines, high-lift devices, etc. An

underlying assumption is that the NPD data represents an aircraft proceeding along a

straight flight path of infinite length and parallel to the ground at a reference velocity

of 160 kts and standard day atmospheric conditions. Separate NPD-curves are defined

for approach and departure procedures to represent the differences between these two

operating states. Standard curves are defined for the following reference distances:

200, 400, 630, 1000, 2000, 4000, 6300, 10000, 16000, and 25000 feet [72]. A notional

plot of approach and departure SEL-NPDs is displayed in Figure 12. Sometimes these

NPD curves are plotted on logarithmic plots with distance on the x-axis and SEL

decibels on the y-axis, with different series corresponding to different thrust levels.

However, the information conveyed is the same. It should be noted that similar NPDs

can be defined for other noise metrics (such as EPNL), but the SEL-NPDs are the

standard set of curves used for assessing community noise exposure.

The SEL grids are calculated by measuring the distance from the aircraft

(approximated as a point source) to each grid location for each segment. Given

the distance to the location and the engine power level, noise is interpolated from

the NPD data set. Linear interpolations are used between tabulated power-settings,

whereas logarithmic interpolation is used between tabulated distances. Corrections

are made to account for extra ground attenuation and shielding by both the airframe

and separate jet engine exhaust flows, the combination of which is commonly referred

to as lateral attenuation. Since the NPD data corresponds to a reference velocity of

160 kts, a duration correction due to a difference from the ground speed implicit

in this basic noise data must be made as well [73]. These segments are then

logarithmically summed up and averaged over the duration of the entire event [71].

By plotting contours of equal SEL values, the aircraft noise signature can be defined

and understood spatially, as is demonstrated in the notional SEL contour plots in
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Figure 12: Notional Noise-Power-Distance (NPD) Data

Figure 13.

The plot on the left results from a notional approach procedure with the runway

threshold defined at the origin, whereas the plot on the right results from a notional

departure procedure with the brake-release point at the origin. As can be seen, the

different contour levels resemble photographic scalings of each other, with higher

decibel SEL contours corresponding to smaller contour areas. The shapes of these

contours approximate how the aircraft noise radiates away from the axis of the flight

path as the aircraft moves from left-to-right along the x-axis for each event. The

decrease in SEL levels demonstrates how the noise attenuates as it radiates from the

aircraft. The SEL maximum contour width (perpendicular to the runway axis) is

characterized primarily by the maximum takeoff thrust on the runway, whereas The

SEL maximum contour length (along the runway axis) is characterized by the aircraft
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Figure 13: Notional Approach and Departure SEL Contours

climb-out trajectory and thrust profile.

It should be noted that the choice of spacing between the grid points determines

the extent to which fluctuations of SEL noise are taken into account. Consequently,

the quality of the noise contours will depend on the choice of the grid spacing,

especially in such zones where sharp changes occur in the noise contours. Interpolation

errors on the noise contours are minimized by a close grid spacing, but this increases

on the other hand the computation time as the SEL noise then has to be calculated

in a large number of grid points. Comparative studies have shown that a maximum

value of about 0.16 nmi for a fixed, even grid spacing constitutes a good compromise

between accuracy (standard deviation less than 0.5 dB for low and medium noise

contours) of the interpolated noise contours and the computation time spent [73].

For the purposes of this work, a slightly finer resolution of 0.08 nmi spacing in each

direction shall be used.

The DNL is a closely related airport-level equivalency-exposure-metric that

attempts to characterize the soundscape of an environment over the course of an

entire day. DNL serves as a measure of average sound level over a period of 24-hours,

obtained from the accumulation of all events (i.e. approach and departure operations)
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with the addition of 10 decibels to events that occur between 10pm and 7am. This

penalty is applied because aircraft noise at night is often perceived as more intrusive

due to the fact that nighttime ambient noise is less than daytime ambient noise, and

several negative effects of noise are related to sleep disturbance. This cumulative

metric is airport specific and requires knowledge of the volume of operations as well

as the distribution of vehicles. The calculation of DNL values requires aggregating

SEL noise as follows [71]:

DNLdB = 10 log10

[

n
∑

i=1

(

Ni ∗ 10
SELi
10

)

+
m
∑

j=1

(

Nj ∗ 10
SELj+10

10

)

]

− 49.4 (15)

Where:

DNL = Day-Night Average Noise Level at grid point (dB)

SELi = Sound Exposure Level at gridpoint of the ith daytime flight

Ni = Number of operations of the ith daytime flight

n = Total number of aircraft with daytime flights

SELj = Sound Exposure Level at gridpoint of the jth nighttime flight

Nj = Number of operations of the jth daytime flight

m = Total number of aircraft with daytime flights

The constant term in Equation (15) is derived from averaging the sound

pressure over the total number of seconds in a day. The American National

Standards Institute (ANSI), the U.S. National Research Council (NRC), and several

other federal agencies and administrations recommend DNL for assessment of
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environmental noise [74]. This recommendation is based on years of attitudinal

survey studies, beginning with the seminal work by Schultz in 1978 that detailed the

percent of population annoyed as a function of DNL in decibels as shown in Figure

14 [75].

Figure 14: Percentage of Population Highly Annoyed versus DNL [75]

Currently, the FAA states goals for noise mitigation in terms of reducing the

number of people exposed to significant noise, where significant noise is defined

as aircraft noise above a DNL of 65-decibels [76]. For example, in calendar year

2012, the FAA aimed at decreasing the amount of population exposed to DNL

65-dB to less than 386,000. The FAA regularly sets targets by analyzing the

historical rate of change of noise exposure versus long-term projections of air traffic

demand. According to the National Environmental Policy Act (NEPA), areas

exposed to DNL levels of 65-dB or greater are entitled to federal aid in terms of
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elements of the Noise Compatibility Plan (NCP), such as sound insulation for homes

[77]. The population exposed to this level of noise is calculated by performing

a Federal Aviation Regulation (FAR) Part 150 study, which refers to a part of

Title 14 of the U.S Code of Federal Regulations (CFR). A FAR Part 150 study

is a noise-compatibility/land-use study designed to identify and evaluate measures

to mitigate the impact of aircraft noise in the vicinity of airports [74]. These

studies define contours of equal DNL noise exposure (particularly DNL 65-dB) and

superimpose these contours over population density maps from Census data, as

demonstrated by the example 2011 noise contour map for Cleveland-Hopkins airport

in Figure 15 [78].

Figure 15: Example FAR Part 150 DNL Contour Map [78]

Given the observed relationship between annoyance and DNL-levels as well as the

ability to calculate spatial noise exposure cross-referenced with population density, the

DNL metric is better than the certification EPNLdB metric for quantifying significant
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noise exposure. The true metric of interest is the count of population exposed to this

significant noise, but the areas and shapes covered by the DNL contour will serve as

valuable intermediate metrics that capture the contributions of the fleet, operations,

and airport configurations. Despite the fact that the FAA only considers significant

noise to be DNL levels of 65-dB or greater, many other U.S. agencies set the significant

noise exposure threshold at DNL 55-dB [74]. Therefore, it is useful to use both the

DNL 65-dB and 55-dB contour areas and shapes as the relevant noise metrics, with

the latter representing a potentially more stringent future metric.

The complexity of airport geometries and infrastructures lead to irregularly

shaped DNL contours such that the maximum contour lengths and widths do not

provide enough information about the contour shape. Each airport features unique

numbers of runways and runway locations that determine the shape of the airport

noise signature. Bernardo reviewed multiple shape metrics and determined that

Detour and Spin provide a good reference for shape comparisons [79]. Detour is

defined as the perimeter of the convex hull of the shape, while Spin is defined as the

average of the square Euclidean distance between all interior points and the centroid

[80]. Notional diagrams of these shape metrics are displayed in Figure 16. To define

shape indices that range from 0 to 1, each of these shape metrics are normalized

with respect to the measure for a circle of equal area.

ConvexHull
PerimeterDetour =

points of #

...
Spin =

22

2

2

1 nddd +++

Figure 16: Detour (left) and Spin (right) Shape Metrics [79]
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Finally, overlaying these DNL contours on spatially distributed population data

around an airport allow for the calculation of population counts exposed to significant

noise. For the US, the source for population data is the US Census Bureau, which

reports population counts by Census-blocks (smallest polygonal unit), block groups

(aggregated blocks), and tracts (aggregated block groups) as shown in the hierarchy

in Figure 17 [81].

Figure 17: Standard Hierarchy of Census Geographic Entities [81]

At the finest resolution (block level), a uniform population distribution is often

assumed, or the population values may be an attribute assigned to the block (polygon)

centroids. Similarly, population values for block groups and tracts are reported at

the centroids of the block group and tract polygons. For exposure and risk analyses,

these centroids often serve as “receptor” points for calculating exposure or dosage
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from some agent (such as cumulative airport/aircraft noise). The Census Bureau

links this population and housing unit counts to spatial information through the

Topologically Integrated Geographic Encoding and Referencing (TIGER) products,

which includes shapefiles and geodatabases for use with ArcGIS R© [82]. An example

of this spatial data can be seen in Figure 18, which displays the Census-blocks for the

state of Georgia. As can be seen the resolution is very fine, with Georgia containing

291,086 Census-blocks and population counts ranging from 0 to 3,228 people per

Census-block. By visualizing the data spatially, an area of interest can be defined

with a buffer from a given location. In Figure 18, for example, a Latitude-Longitude

point is defined to mark Hartsfield-Jackson airport, and a 50 nautical mile radius is

defined around this point. Each state Census-block contains a large magnitude of

data, so in this way the data can be filtered by spatial relevance.
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Figure 18: State of Georgia Census Blocks
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2.1.1.4 Summary of Metrics

The final list of environmental impact metrics considered for this research are

included below in Tables 5 and 6. For each of the CAEP goals, the vehicle-level and

fleet-level metrics are listed.

Table 5: Environmental Impact Metrics: Vehicle-Level

CAEP Goal Metric

GHGs
Total Mission Fuel Burn [kg]
Total Mission NOx Emissions [g]

Local Air Quality1
Terminal Area Departure NOx Emissions [g]
Terminal Area Approach NOx Emissions [g]

Noise Exposure2
SEL Contour Areas [nmi2]
SEL Contour Maximum Widths [nmi]
SEL Contour Maximum Lengths [nmi]

1 Also track terminal area fuel burn (below 3,000-ft)
2 Track multiple SEL decibel levels

Table 6: Environmental Impact Metrics: Fleet-Level

CAEP Goal Metric

GHGs
Aggregate Fuel Burn [kg]
Aggregate NOx Emissions [g]

Local Air Quality1
Aggregate Departure NOx Emissions [g]
Aggregate Approach NOx Emissions [g]

Noise Exposure2

DNL Contour Areas [nmi2]
DNL Contour Shapes: Detour Index3

DNL Contour Shapes: Spin Index3

Population Exposure Counts

1 Also track aggregate terminal area fuel burn (below 3,000-ft)
2 DNL 65-dB and DNL 55-dB
3 Normalized on a 0-1 scale

Aggregate fuel burn and NOx emissions can be calculated by linking vehicle-level

performance to operational frequencies. This formulation is relatively simple, as it
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essentially represents a weighted sum of the vehicle level performance metrics as

summarized by Equation (16):

Y =

NumAC
∑

i=1

(

∑

x

ni,x yi (x)

)

(16)

Where:

Y = Fleet-level aggregation of fuel-burn or NOx emissions

i = Unique aircraft index

NumAC = Total number of unique aircraft in the fleet

x = Unique mission lengths

ni,x = Number of operations by aircraft i at mission length x

yi (x) = Performance of aircraft i as a function of mission length x

This formulation lends itself to very rapid calculations, especially if the

performance of aircraft as a function of mission length yi (x) is reduced to a second

order regression. These calculations can be performed by sampling from these

regressions and multiplying by the flight frequency. This formulation does not

work for noise, however, because noise is inherently an airport-level metric. Noise

contour areas and population exposure depend on vehicle-level noise footprints,

operational distributions and volumes at each airport, runway configurations at these

airports, and the distribution of population around the airport. Fleet-level noise is

characterized by accumulating contour areas and population exposure counts across

all of the airports. However, many of the airports do not feature significant volume of

operations or are isolated from local communities. Given the computational expense

of noise calculations, noise studies often identify a subset of relevant airports with
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significant noise exposure to make the problem more manageable. The subset of

airports to be used for this research are the MAGENTA 95 airports which account

for the majority of the national counts of population exposed to significant noise [83].

This subset is consistent with the airport set used by Bernardo in developing his

Generic Airport categories, and thus the airport runway configurations and baseline

schedules were conveniently available [79]. The methods outlined in this work are

applicable regardless of the subset of airports, although the inclusion of international

airports with different operational volumes and distributions may lead to different

results for the generic vehicle approach.

2.1.2 Review of Surrogate Methods for Fleet-Level Analysis

Fleet simplifications are often used for fleet-level studies. For example, Purdue

University has and continues to develop their Fleet-Level Environmental Evaluation

Tool (FLEET) to investigate how fleet-level environmental impacts will evolve over

time [84]. This tool centers on an aircraft allocation model that represents airline

operations and decision-making rather than focusing on specific technologies or

technology packages. To manage the number of aircraft types used by the airline,

current (and potential future) aircraft are aggregated into six classes based on

seat capacity. To represent different technology “ages” within these classes, each

class is further segregated into categories of representative-in-class, best-in-class,

new-in-class, and future-in-class. Representative-in-class aircraft are those that had

the highest number of operations in 2005 within each seat class and are typically older

aircraft. The best-in-class aircraft are those that had the most recent service entry

date within each seat class as of 2005 and, thus, incorporate more recent technological

advances. A list of the classes with their corresponding representative-in-class and

best-in-class aircraft is shown in Table 7 [84].
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Table 7: Purdue FLEET Aircraft Classes

Class Seats Representative-in-class Best-in-class

Class 1 20-50 Canadair RJ200/RJ440 Embraer ERJ145
Class 2 51-99 Canadair RJ700 Embraer 170
Class 3 100-149 Boeing 737-300 Boeing 737-700
Class 4 150-199 Boeing 757-200 Boeing 737-800
Class 5 200-299 Boeing 767-300 Airbus A330-200
Class 6 300+ Boeing 747-400 Boeing 777-200ER

The new-in-class aircraft are either aircraft currently under development that

will enter service in the future or concept aircraft that incorporate technology

improvements expected in the future. Likewise, the future-in-class aircraft are those

aircraft expected to include another generation of technology improvements and

therefore expected to enter in service a date further in the future. The airline model

operates only these aircraft as a representative fleet mix [84]. While this method does

provide a useful example of ways to simplify the fleet, by using fixed new-in-class

and future-in-class vehicles, this model is limited in its ability to explore a variety of

future technology scenarios.

In an effort to address this limitation, Becker introduced “generic vehicle” concepts

for modeling and simulating aggregate fleet fuel burn and NOx emissions [44]. The

goal of these generic vehicles were to reduce a complex and diverse fleet to a subset

of physics-based vehicle-level models that could match the aggregate metrics of the

full fleet when linked to the same operational schedules as shown in Equation (16).

Traditionally, vehicles have been grouped by internal seat layouts and seating capacity

into seat classes, such as the CAEP/8 seat classes listed in Table 8.

Under this approach a single airframe type can be classified into multiple seat

classes depending on the internal seat layout. For example, Figure 19 shows the same

vehicle with the same fuselage under two different seating layouts for two different

airlines. One airline fits 178 seats into the fuselage, classifying the aircraft as a Seat

Class 5 vehicle. The other airline increases the seat-pitch between rows, which only
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Table 8: CAEP/8 Seat-Class Definitions

Seat Class ID Passenger Capacity Type of Aircraft/Layout1

SC12 1-20 General Aviation
SC2 21-50 Regional Jet
SC3 51-100 Regional Jet
SC4 101-150 Single Aisle
SC5 151-210 Single Aisle
SC6 211-300 Small Twin Aisle
SC7 301-400 Large Twin Aisle
SC8 401-500 Large Quad
SC9 501-600 Large Quad

1 Most common type of aircraft associated with each seat-class
2 SC1 not included in this study due to few operations at
relevant airports

allows for 150 seats, classifying the same aircraft as a Seat Class 4 vehicle.

Figure 19: Multiple Seat-Class Configurations for Same Vehicle

SeatGuru R© provides extensive lists of vehicles and seating configurations. A few

examples of aircraft that fall into multiple seat classes depending on how airlines

configure the internal seat layout include [85]:

• The Embraer ERJ-190 may range from 94 to 114 passengers (spans SC3-SC4).

• The Airbus A321 may range from 185-220 passengers (spans SC5-SC6).

• The Boeing 767-300ER may range from 218-350 passengers (spans SC6-SC7).

The performance of the aircraft itself, however, does not typically vary greatly due

to this internal layout. Becker instead proposed grouping vehicles on multiple metrics
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to create a better distinction between groups. He defines “capability groups” which

take into account the maximum payload and the maximum range of each airframe

[44]. Becker used these metrics to identify four groups:

• Regional Jet (RJ)

• Single Aisle (SA)

• Small Twin Aisle (STA)

• Large Twin Aisle (LTA)

Given these groups, Becker explored three methods for surrogating the fleet. The

first method used a best-in-class representation similar to that used in the Purdue

FLEET model, but this yielded significant errors at the fleet-level with respect to a

set of reference operations and increased error with respect to variable schedules of

operations. The second method employed a parametric correction factor applied

to these best-in-class vehicles, which significantly improved results for both the

reference operations and variable operations. These correction factors, however, were

defined for a fixed technology condition, and thus proved incapable of accurately

capturing impacts of technology infusion. The third method utilized an average

vehicle approach, which filters settings for vehicle design parameters in order to

reduce the error of aggregate results. This method was inspired by a similar approach

used by the Environmental Protection Agency (EPA) for conducting an analysis of

annual automobile emissions data in the context of corporate average fuel economy

regulations [86]. Becker enumerated the following steps for this average vehicle

approach:

1. Conduct effect screening to determine which input parameters are in fact the

most influential on the relevant fleet-level metrics.
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2. Calculate a target representing the aggregate performance of the fleet for each

metric of interest using Equation (16).

3. Vary the key input parameters from effect screening around the reference vehicle

to generate engine cycle and airframe geometry combinations for design space

exploration.

4. Conduct thorough design space exploration to identify the best option for an

averaged vehicle that hits the aggregate targets calculated for the entire fleet

for each environmental metric.

The problem of matching aggregate targets can equivalently be described as

attempting to minimize error with respect to these targets. Given the linear nature of

Equation (16), minimizing error within each class minimizes the combined fleet-level

error. Relative error is used to compare multiple metrics on different scales and avoid

biasing the generic vehicles toward accuracy in any one metric over the others, but

the method doesn’t favor over-predicting or under-predicting and instead focuses

on minimizing the magnitude of this relative error. The resulting physics-based

models can then be used for modeling technology infusion at the component or

subsystem level such that the interdependencies and compatibilities for multiple

technologies can be quantified and propagated to aircraft system-level performance.

These technology-infused models can then be used in conjunction with forecasts and

fleet-evolution models to objectively project the future environmental impacts under

various technology scenarios.

This method provided better accuracy for a set of reference operations and

acceptable accuracy for variable operations and technology infusion. The maximum

relative error among the metrics (total-mission fuel burn, terminal-area fuel burn,

total-mission NOx emissions, and terminal-area NOx emissions) for each of Becker’s

method is summarized in Table 9 [44].
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Table 9: Maximum Errors from Becker’s Experimental Results

Experiment Surrogate Fleet Method

Best-in-class Parametric
Correction
Factor

Average
Vehicle

Reference Operations 51.00% 0.71% 0.96%
Variable Operations 52.73% 0.87% 2.42%
Technology Implementation 110.91% 3.73%

Becker’s work demonstrated that the average vehicle approach can match

aggregate fleet data within a reasonable level of accuracy for the baseline reference

fleet, a fleet with variations in operations, and a fleet with technology infusion.

A similar approach was used in the World Fleet Modeling chapter of the IATA

Technology Roadmap 2013 previously mentioned in Chapter 1 [7].

2.1.3 Review of Rapid Airport-Level Noise Computation Model

Bernardo developed and validated the Airport Noise Grid Integration Method

(ANGIM) for rapid computation of noise grids and contours to enable scenario

analysis. This method simplifies and accelerates the process used in the Integrated

Noise Model (INM) by pre-calculating the vehicle-level SEL-grids under the

simplifying assumptions of standard sea-level atmospheric conditions and straight-in,

straight-out ground tracks. These assumptions allow the vehicle-level SEL grids to be

precalculated and stored in local memory such that they can be called using simple

table lookup routines. In this way, ANGIM serves as a screening level capability that

complements detailed models like INM or AEDT [79]. ANGIM is an example of a

method that exchanges fidelity for computational speed, and thus it can serve as an

integral piece of the proposed framework.

ANGIM uses a schedule of operations on each runway at an airport to

logarithmically sum the vehicle-level SEL grids to runway-level DNL grids. These
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runway-level grids are then translated and rotated with respect to the runway

configurations. ANGIM finally overlays the properly oriented runway-level grids,

interpolates them to account for inexact grid-meshing, and sums these grids

logarithmically to approximate an airport-level DNL grid. Contours of equal DNL

decibel values can be defined from these airport-level DNL grids, and ANGIM is

capable of calculating the areas of these contours as well as a series of shape-metrics

such as the previously mentioned Detour Index and Spin Index. This method is

diagrammed in Figure 20. It should be noted that in the absence of specific runway

utilization information, ANGIM assumes that each runway features cross-flow

operations (i.e. runway operates evenly in each direction over the course of the day)

and that operations by each aircraft in the flight-schedule are evenly divided over all

available runways.

Figure 20: Airport Noise Grid Integration Method (ANGIM) [79]

2.2 Formulation of Modeling and Simulation Requirements

The framework proposed in this work hinges on modeling and simulation at both

the fleet- and vehicle-level, but fidelity and speed must be balanced such that many

alternatives can be explored while still enabling meaningful and traceable analysis.

Thus, requirements must be derived for both fleet-level and vehicle-level modeling

and simulation tools to ensure this balance is appropriate.
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2.2.1 Requirements for a Fleet-Level Model

Much like the legacy tools that preceded it, AEDT is designed to perform official

inventory analyses such as FAR Part 150 studies. For this reason, it includes many

layers of complexity such as detailed weather and terrain models. While these

layers are necessary for official inventories, the complicated setups and computational

expense associated with them inhibits the ability to use AEDT for a screening-level

scenario analysis that isolates the sensitivities of aircraft performance improvements.

In order to perform this screening-level analysis, a fleet-level tool must be designed

to reflect the structure of AEDT (shown in Figure 2 in Chapter 1) but reduce it to a

more simplified formulation.

Becker outlines the requirements for fleet-level modeling and simulation of fuel

burn and NOx emissions [44]. Inputs to the model include aircraft performance results

derived from vehicle-level modeling and simulation tools, along with operational

schedules that represent the frequency of flights by each vehicle type at each mission

length. This formulation is relatively simple, as it essentially represents a weighted

sum of the vehicle level performance metrics. This formulation does not work for

noise, however, because noise is inherently an airport-level metric as is evident

from the discussion of noise metrics. Noise contour areas and population exposure

depend on the operational distributions and volumes at each airport, the runway

configurations at these airports, and the distribution of population around the airport.

Thus, a unique set of requirements must be defined for a noise modeling tool, and

this tool must focus on airport-level analysis.

Dikshit and Crossley define the following five requirements for a generic airport

noise modeling tool [87]:

1. Single-valued: Provides a single point of comparison.

2. Rapidly Computable: To enable evaluation of a multitude of scenarios.
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3. Simple Formulation: To avoid resource allocation problems.

4. Correlated: Compares favorably to a detailed model for validation.

5. Flexible: Able to incorporate and evaluate impacts of new technologies and/or

aircraft.

The generic fleet-level model proposed by the authors focused on a single-metric,

the DNL 65-dB contour area. The model approximated the area around the airport

with a regression dependent on the number of operations and the aircraft EPNLdB

certification measurements. This model, however, did not capture any spatial

details about the noise. Bernardo critiques these requirements and proposes slight

modifications to them. Bernardo accepts the notion that the model should be

rapid, correlated with an industry standard or detailed model, and flexible enough

to incorporate new technologies and aircraft. However, he rejects the simplicity of

the regression model, instead replacing it with a requirement for automation and

comparatively short setup times relative to a detailed model. Bernardo additionally

rejects the single-valued metric requirement and the sole use of the DNL 65-dB

contour area. A simple regression for contour area cannot properly capture the

number of people exposed to significant noise due to its lack of spatial data.

Bernardo’s six requirements for a generic fleet-level noise model are as follows [79]:

1. Easily incorporates new and technology-modified aircraft

2. Computational speed with respect to detailed models

3. Acceptable accuracy with respect to detailed models

4. Simple-to-manage inputs

5. Full automation

6. Contour area and shape information captured
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The latter methods and requirements, however, are limited to fleet-level noise.

Given the three CAEP goals defined in Chapter 1 and the corresponding metrics, it

naturally follows that the fleet-level tool must be able to evaluate total mission metrics

(such as total fuel burn and NOx emissions) as well as terminal area metrics (such as

LTO NOx emissions and DNL contours) while adhering to current best practices. In

the past, fleet-level analyses of aviation’s contributions to each of these metrics were

divided amongst many different tools. The consequence of these decoupled analyses

was an inability to capture the interdependencies of fuel burn, emissions, and noise.

Thus, an appropriate fleet-level environmental impact tool shall:

1. Measure total mission and terminal area metrics for fuel burn and NOx

emissions.

2. Measure DNL contour area and shape information.

3. Capture interdependencies between all of the metrics.

4. Adhere to current standards and best practices.

5. Incorporate existing aircraft with industry validated data where available.

6. Easily incorporate new and technology modified aircraft.

7. Demonstrate computational speed with respect to detailed models.

8. Demonstrate acceptable accuracy with respect to detailed models.

9. Feature simple-to-manage inputs.

10. Leverage automation as much as possible.

A notional formulation of a screening-level tool for fleet-level analysis that

meets these requirements is diagrammed in Figure 21. The formulation hinges on

linking the operational schedules between simple fuel burn and NOx calculations as
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represented in Equation (16) and the airport-level formulation for computing noise

contours and eventually population exposure.

Figure 21: Notional Diagram of Integrated Fleet-Level Environment

2.2.2 Requirements for a Vehicle-Level Model

The integrated tool suite in Figure 21 captures fleet-level responses that depend

on operational schedules and fleet mixes, but it is limited in its capabilities to

objectively assess the impacts of technology infusion and the evolution of the fleet.

Most technology development is focused on aircraft-level system and subsystem

improvements. Thus, an alternative modeling and simulation environment is required

in order to assess vehicle-level technology impacts.

Many of the requirements for the vehicle-level model should match the

requirements established for the fleet-level tool in the previous section. The

model must focus on the same type of metrics as the fleet-level tool and capture

interdependencies between these metrics. The noise analysis must focus on the

SEL metric as opposed to the DNL metric, as the latter is an airport-level metric

whereas the former is a vehicle-level metric. This model should be validated against

industry data when available, and should feature manageable setup procedures with
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an emphasis on automation. The most important requirement for the vehicle-level

tool is to fill in the gaps that can’t be accomplished with the fleet-level tool and to

interface with said fleet-level tool. Thus, the vehicle-level model shall:

1. Model component-level performance using as much physics-based formulations

as possible.

2. Model system- and subsystem-level impacts from technology infusion.

3. Model interactions and compatibilities for technology packages with multiple

technology concepts infused simultaneously.

4. Generate an integrated analysis of aircraft performance, exhaust emissions, and

source noise.

5. Employ a simple formulation with automation for exploring multiple technology

scenarios on multiple vehicle types.

6. Be traceable, validated, and endorsed by industry and government agencies.

7. Interface with the fleet-level tool suite.

By capturing the technology impacts at the subsystem level the model will be

able to more objectively evaluate the impacts of technology at the aircraft system

level, including any potential incompatibilities from multiple technologies infused

simultaneously on the same aircraft.

2.3 Technical Challenges

The previously developed generic vehicles only focused on aggregate fuel burn and

emissions metrics. Fleet-level accuracy is important for noise as well, because the

true measure of noise impact is the number of people exposed to significant noise.
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To determine this, noise impacts must be aggregated to define DNL 65-dB contours,

and these contours must be superimposed over population maps in a Geographical

Information System (GIS) such as Esri’s ArcGIS R© framework. If the airport-level

DNL 65-dB contour is inaccurate, these counts of people exposed to significant noise

can be misleading.

One objective of this study is to add the complexities of noise calculations for

defining these generic vehicles. If the vehicles in the fleet can be binned into categories

and reduced to a handful of per class average generic vehicles that can match aggregate

fleet results for fuel burn, emissions, and noise with reasonably accuracy, this would

reduce run-times considerably while still providing a screening-level fidelity for an

objective fleet-level evaluation of various technology packages. This is especially

critical for noise analysis due to the computational expense of the grid-based noise

methods. These generic vehicles can be used as replacement aircraft in future years

to approximate fuel burn, emissions, and noise under the uncertainty of future fleet

composition. Additionally, these generic vehicles can serve as virtual test beds to

estimate the fleet-level impacts of various technology infusion scenarios, capturing

the interdependencies of noise and emissions.

Expanding the generic vehicles to include noise introduces a few additional

technical challenges beyond Becker’s approach. The fleet classification problem must

be revisited and reformulated in a manner designed to reduce in-class variance for

multiple metrics simultaneously. Validation with respect to fleet-level targets must

be reformulated as airport-level targets, but the operational complexities that are

unique to each airport may confound this validation. Additionally, the true noise

metric of population exposure to significant noise must somehow be incorporated

into the noise analysis for proper validation of the accuracy of the generic vehicles.
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2.3.1 Fleet Classification

While Becker’s capability groups classified vehicles into groups that fly similar route

types, they do not take into account the actual performance of these aircraft with

respect to the environmental metrics of interest. This leads to the following research

question:

RQ 1: What parameters should be used to classify aircraft into generic vehicle

groups?

Given that the end goal is to define vehicles that match aggregate metrics for

the combined fleet, the classification scheme should delineate groups based on the

corresponding vehicle-level performance metrics from Table 5 that map to these

fleet-level metrics. To reduce the variability of vehicle performance per group, this

study proposes classifying aircraft into “vehicle classes” which are defined by both

the payload-range capability as well as the vehicle-level performance with respect

to the environmental metrics discussed previously. The first hypothesis proposes

that this type of classification scheme will result in a better generic fleet than the

traditional seat-class groupings:

Hypothesis 1: A per-class average generic fleet of vehicles defined by

vehicle-class groupings based on similarities in the environmental performance

metrics will feature superior fleet-level accuracy compared to a per-class average

generic fleet of vehicles defined by traditional seat-class groupings.

The justification for this hypothesis can be derived from simple probability theory

and statistics. Suppose that for a given metric, the relative error of the best average

generic vehicle within a class relative to the target metrics across a subset of airports
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can be represented by a univariate normal distribution, ǫi ∼ N
(

µǫi , σ
2
ǫi

)

. The ideal

generic vehicle will reduce the mean error within the group to approximately zero,

but the variance is a function of the variance in performance across the subset of

airports. Probability theory then suggests that under the assumption of independence

between each group, the aggregated performance of the generic fleet is also normally

distributed with the mean being the sum of the individual group means and the

square of the standard deviation being equal to the sum of the squares of the standard

deviations of each group, as shown in Equation (17) [88].

∑

ǫi ∼ N
(

∑

µǫi ,
∑

σ2
ǫi

)

(17)

Where:

ǫi = Normally distributed error for ith vehicle class

µǫi = Mean error for ith vehicle class

σ2
ǫi
= Variance of error for ith vehicle class

Equation (17) is only true under the assumption of independence, as this leads to

a correlation of zero and allows for the omission of covariance terms. It should also

be noted that separate normally distributed random variables can be uncorrelated

without being independent, in which case Equation (17) would not hold. However,

given that each per-class generic vehicle will only be used to represent vehicles within

its own group, it is reasonable to assume that the error distributions for each generic

vehicle class is independent of the error for the other vehicle classes. Given this

assumption, it can clearly be seen that a grouping that reduces the variance within

each class should lead to a reduction in the overall variance at the fleet level.
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In reality, this abstract justification is overly simplified for a number of

reasons. First, the generic vehicles will actually be represented by multivariate error

distributions as opposed to a single univariate error distribution, and the metrics for

each error distribution within a class are likely correlated with each other. Second, the

variance of the vehicle-level performance is not necessarily representative of the actual

variance within each group, as the aggregate performance will actually be weighted

by the frequency of operations by each constituent vehicle. Third, the relative error

may not actually be normally distributed for each metric. In order to objectively test

this hypothesis, the generic vehicle tests introduced in this research will be performed

in parallel for the proposed vehicle-class groupings as well as the traditional seat-class

groupings.

Equation (17) suggests that the fleet-level variance would likely benefit from more

groups with less deviations from the mean in each group, the extreme being n groups

corresponding to n unique aircraft in the fleet. For this extreme, each of the n groups

feature one unique aircraft and thus zero variance. This is computationally inefficient,

however, and was the impetus for the overarching hypothesis of exchanging fidelity

for speed. A generic fleet of m groups, where m < n, will reduce computation

time but will increase the deviations from the mean. The seat class formulation

features eight classes (excluding SC1), and to ensure that better fleet-level results for

the vehicle-class formulation are not confounded by the resolution of the classes a

number less than eight should be chosen. For this work, Becker’s vehicle classes have

been modified from four to six classes to reflect the structure of current research and

development programs by the major aircraft manufacturers [89]:

1. Regional Jet (RJ)

2. Small Single Aisle (SSA)1

1Becker’s Single Aisle (SA) class was split into the SSA and LSA classes primarily due to
distinctions in noise contour lengths for different single aisle stretch-variants.
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3. Large Single Aisle (LSA)

4. Small Twin Aisle (STA)

5. Large Twin Aisle (LTA)

6. Very Large Aircraft (VLA)2

Assigning vehicles to these vehicle-class groups to reduce the variance in

the performance metrics requires the implementation of supervised multiclass

classification algorithms. There are generally a few approaches to the classification

problem, with each typically attempting to map training data to the assignment of a

class label through mathematical or statistical techniques [90]. Regardless of which

approach is used, the vehicle-level performance metrics should be used as training

data, and the method should be able to assign aircraft into one of these six classes.

2.3.2 Fleet-Level Characterization

Fuel burn and NOx emission metrics are very simply mapped from vehicle-level

performance to fleet-level aggregations due to the fact that they are mass-based

metrics. Noise, however, depends on instantaneous sound pressure levels that

spread out spatially and must be integrated over the duration of events. This

spatio-temporal dependence means that the noise metric depends on the local

airport configurations and operational schedules, and thus cannot be mapped to

fleet-level aggregations with simple linear summations of vehicle-level performance as

is possible for the mass-based metrics. This motivates the following research question:

RQ 2: Given that noise is an airport-level metric, how can it be incorporated into

the average-generic vehicle formulation?

2Becker did not include this class in his formulation. This class features larger four-engine aircraft.
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Research Question 2 implies that Becker’s formulation requires a modification to

incorporate noise. The importance of accuracy in contour areas and shapes at each

airport for accurate population exposure counts further implies that this formulation

should not simply be centered around aggregated fleet results but rather should focus

on accuracy at each airport. This airport-level characterization was suggested in

Equation (17) which defined the accuracy of a generic vehicle model across a subset

of airports, where the errors for each metric at each airport sample in the subset are

combined into a distribution of errors.

Becker has already demonstrated that an average generic vehicle approach

provides better fleet-level accuracy than a traditional representative vehicle approach

for fuel burn and NOx emissions, and the linear equations for these metrics suggest

that the method should work similarly for an airport-level formulation. The second

hypothesis proposes that this also holds for the DNL noise contours:

Hypothesis 2: A fleet of average generic vehicles will more accurately

approximate the DNL 65-dB noise contours across a subset of airports as compared

to a traditional representative-in-class approach.

The complexities of the noise calculations prevent this hypothesis from being

accepted strictly from mathematical arguments, and thus experimentation is required.

This hypothesis shall be tested in a similar manner as Becker’s previous formulation.

The cumulative noise contour areas from both the representative-in-class approach

and the average generic vehicle approach shall be quantified and compared against a

set of airport-level targets using actual vehicles. The representative-in-class vehicles

shall be defined using traditional seat-class3 designations and choosing the vehicle in

3For the purposes of this study, seat class refers specifically to the CAEP/8 definitions as listed
in Table 8 [60].
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each seat class with greatest prevalence in the operational schedules. As mentioned

in the previous section, the generic vehicle approach will be repeated for both

seat-class and the proposed vehicle-class groupings. The accuracy of each approach

will be evaluated with respect to each airport in addition to the cumulative results

across the entire subset.

2.3.3 Airport Operational Complexities

Once the vehicle classes and the target airports are established, a series of validation

tests must be defined for benchmarking the best average generic vehicle designs. The

airport-level characterization requires these tests to account for different factors that

contribute to the variability of the airport-level results, with target aggregate metrics

generated from the combination of vehicle-level performance of the constituent

vehicles linked to frequency weightings from the baseline operational schedules

at each airport. These airport-level results depend on many different operational

complexities, which motivates the following research question:

RQ 3: Given the unique operations and mission specifications associated with

each airport, can the generic vehicles still balance accuracy across a subset of airports?

For this work the stochasticity of atmospheric conditions and airport-specific

diverging ground tracks have been removed to enable rapid noise calculations.

However, each airport still features unique operational distributions, trip-length

distributions, operational volumes, and infrastructures. The fuel burn and NOx

emissions relationships to these operational complexities can be readily understood

from simple examination of Equation (16) which is a linear equation that is weighted

by operational frequencies. As mentioned previously, vehicle-level performance for
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these metrics typically vary quadratically with mission range. Furthermore, the fuel

burn and NOx emissions do not depend on the airport infrastructures (assuming

standard day atmospheric conditions and no diverging ground tracks). It can be

reasoned that the airport-level error for these metrics can be minimized by matching

the vehicle-level performance of each average generic vehicle to a weighted average of

the actual vehicle operations at each airport.

For the noise contours, the relationship to these operational complexities is not

as clear. This is due to the spatial nature of noise propagation and attenuation

which features unique SEL contour sizes and shapes for each vehicle in the fleet.

Each unique stage-length mission is modeled using a different takeoff weight. This

modifies the climb-out trajectory which impacts the lengths of the SEL contours.

The noise metrics also use logarithmic summations, and thus the frequency of

operations by each unique vehicle and each class type cannot be clearly mapped to

the airport-level metric, especially given the spatial distribution of noise introduced

by each unique airport runway layout. Determining how each of these operational

complexities impacts the airport-level noise metrics requires investigation through

simulation-based experiments. Of all of these complexities, however, the per class

operational distributions capture the frequency-weighted variability within each

class, and thus it is anticipated to be the most important factor for selecting the

average generic vehicle input parameters. This leads to the following hypothesis:

Hypothesis 3: If the operational distributions of each vehicle class across a

subset of airports can be isolated from other operational complexities, the average

generic vehicle that minimizes the mean error for the DNL noise contours across

the subset of airports will also minimize the error at each airport when all of these

operational complexities are reintroduced.
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Once again, the justification for this hypothesis can be derived from simple

probability theory and Equation (17). By isolating the error distributions for each

class (ǫi) and minimizing the mean error for each (µǫi), the combined classes should

also minimize the airport-level mean error. The additional operational complexities

can be thought of as adding variance to the target metrics across the different airports.

Given that the generic fleet will operate under the same trip-length distributions,

operational volume, and airport infrastructures as the actual target fleet, it can be

assumed that the variance of the generic fleet performance will expand to match the

additional variance of the target metrics. Thus, the operational distributions of the

constituent vehicles in each class at each airport should ultimately define the average

generic vehicles. To test this hypothesis, a series of validation tests with sequentially

increasing complexity shall be formulated in an effort to first decouple the mean and

variances of the error distributions. Sequentially increasing the complexity of the

validation tests enables traceability for each source of operational complexity.

One challenge for these generic vehicle tests is the need to optimize multiple

metrics simultaneously, which suggests that there is not one solution but rather a

series of Pareto optimal solutions [91]. Adding to this challenge is the fact that

these metrics are measured on different scales, and thus the optimization problem

must be formulated in a manner that maps multiple objectives to a single objective

function without biasing the generic vehicles towards accuracy in one metric over

another. This type of mapping is often referred to as scalarization, and typically

makes use of value or desirability functions which convert the objective of minimizing

each objective function to a goal of maximizing an overall desirability across all of

the objectives simultaneously. This conversion allows for the use of conventional

single-objective optimization routines for a multiple objective optimization problem.
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2.3.4 Methods for Calculating Population Exposure

All airport-level noise analysis included in this research shall use ANGIM, but this

method currently lacks a capability for calculating population exposure counts around

the airport. Airport noise exposure studies typically use either Census-block centroids

or specific population receptor points as defined by a user [72]. In common practice,

Census data are intersected with buffers of influence (such as DNL contours) using

two primary approaches to quantify population at risk [92]:

1. Tally the entire population (if the centroid is inside the buffer) or zero population

(if the centroid is outside the buffer)

2. Use an area weighted population accounting approach (based on the ratio of

the areas of the polygon included in and excluded from the buffer).

The homogeneous population distributions assumed by the area-weighted method,

unfortunately, seldom occur in the real world [93]. However, analytical approaches

that use Census polygon centroids to represent population are likely to produce results

containing substantial errors [92]. By assuming the population is concentrated at

these receptor points, DNL decibel levels need only to be calculated at these centroid

points instead of calculating an entire grid of receptor points as is required for

visualizing the DNL contours. This saves some computation time, but the drawback of

this method is that there is a mismatch between the Census block centroids contained

within a contour and the Census blocks actually intersected by the contour, as is

demonstrated in Figure 22. Additionally, using this approach is overly discretized

and does not allow a continuous reduction in the extent of a DNL contour to map

to a continuous reduction in population exposure counts. It is preferable that the

spatial representation features continuous variability.

Thus rather than using the discrete centroids, the area-weighted population

approach should be utilized on Census-block data with the justification that the
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Figure 22: Drawbacks of Polygon Centroid Population Methods

high-resolution associated with this smallest areal unit of population data shall

minimize the potential error associated with the assumption of uniform population

distribution. More advanced techniques such as pycnophylactic interpolation or areal

interpolation with the incorporation of ancillary data could be used, but given the

complexity of these methods compared to the intended use of this Census-block data

for a screening-level tool, the basic area-weighted approach benefits from its relative

simplicity [93].

ANGIM has the ability to compute airport DNL grids as well as DNL contours

for a given spatial reference setting the first primary runway brake-release point at

the (0,0) grid point. These grids are currently set to a very fine grid-resolution of

0.08-nmi, and contours contain spatial data referenced to this brake-release point.
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Thus if the brake-release point can be mapped to the actual geographical coordinates,

the entire grid and the contours can also be mapped to geographical coordinates.

Contour polygons can be defined in a GIS program such as ArcGIS R©, and these

contours can be overlaid with Census-block data to calculate population exposed to

significant noise. However, it can be data intensive and time consuming to import

contours for every potential scenario into ArcGIS R© for performing these population

exposure counts. One of the objectives of this research is to enable rapid noise

computation models like ANGIM to include a screening-level analysis of population

exposure counts. The generated contours from ANGIM must be linked to this

Census block data in some other manner than calling a Geographical Information

System every time a new scenario is calculated. This leads to the following research

question:

RQ 4: How can assessment of community exposure to significant noise be

accounted for in a rapid airport-level noise computation model?

The population method proposed in this work balances the computational

benefits of the centroid method with the better assumption of uniform population

distribution within the Census blocks. This shall be accomplished by mapping

population data around airports to grid points corresponding to the resolution of

noise analysis in ANGIM. The data can be exported from ArcGIS R© through a

one-time pre-processing and stored in ANGIM for rapid calculation of population

exposure counts. This method will be discussed in more detail in Chapter 3.
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2.4 Summary of Research Questions and Hypothesis

Statements

Four research questions and three hypothesis statements were introduced in this

chapter. They are repeated here for convenience with a brief summary of new

formulations and methods that must be introduced to answer each research question:

RQ 1: What parameters should be used to classify aircraft into generic vehicle

groups?

Hypothesis 1: A per-class average generic fleet of vehicles defined by

vehicle-class groupings based on similarities in the environmental performance

metrics will feature superior fleet-level accuracy compared to a per-class average

generic fleet of vehicles defined by traditional seat-class groupings.

Research question 1 and the corresponding hypothesis statement suggest that

classifying aircraft based on internal seat layouts introduces unnecessary per class

variance with respect to each of the vehicle-level performance metrics. Instead, the

vehicles should be classified using a multiclass classification method that leverages the

vehicle-level performance metrics for class assignments with the goal of minimizing

per class variance. Minimizing the variance within each class should lead to improved

fleet-level accuracy for the combined generic fleet.

RQ 2: Given that noise is an airport-level metric, how can it be incorporated

into the average-generic vehicle formulation?

Hypothesis 2: A fleet of average generic vehicles will more accurately

approximate the DNL 65-dB noise contours across a subset of airports as compared
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to a traditional representative-in-class approach.

Research question 2 and the corresponding hypothesis statement suggest that

Becker’s average generic vehicle methodology can be extended to capture fleet-level

noise in addition to fuel burn and NOx emissions. However, the airport-dependent

nature of the noise metrics requires the fleet-level problem to be characterized

differently than in Becker’s original formulation. This modified characterization

of the fleet-level problem shall focus on accuracy at each airport in addition to

minimizing cumulative error.

RQ 3: Given the unique operations and mission specifications associated with

each airport, can the generic vehicles still balance accuracy across a subset of airports?

Hypothesis 3: If the operational distributions of each vehicle class across a

subset of airports can be isolated from other operational complexities, the average

generic vehicle that minimizes the mean error for the DNL noise contours across

the subset of airports will also minimize the error at each airport when all of these

operational complexities are reintroduced.

Research question 3 and the corresponding hypothesis statement suggest a need

for a series of validation tests with sequentially increasing operational complexity.

In this manner, the influence of each level of complexity on noise computations

across the subset of airports can be traced, but it is anticipated that the simplest

formulation will suffice for optimizing the generic vehicle input parameter settings.

This simpler formulation reduces the complexity of the multiobjective optimization

problem for simultaneous accuracy in multiple metrics with potentially competing

trends. Scalarization through the use of desirability functions allows for the use of
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traditional single-objective optimization techniques on the multiobjective problem.

RQ 4: How can assessment of community exposure to significant noise be

accounted for in a rapid airport-level noise computation model?

While Bernardo’s rapid airport-level noise computation model provides a good

compromise between fidelity and computational speed, in its current form it lacks a

capability for rapidly computing community noise exposure in terms of population

counts within the DNL contours. Area-weighted population accounting allows for

the spatial representation of noise exposure to feature continuous variability, but

importing georeferenced contour shapefiles into a Geographical Information System

to calculate these area weightings is computationally inefficient. A method that maps

population data to a grid of equal resolution to the noise computation model would

allow for quick calculations of exposure counts while still allowing the continuous

variability associated with area-weighted population accounting.
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CHAPTER III

PROBLEM FORMULATION AND TECHNICAL

APPROACH

Becker’s methodology is posed as an equivalent optimization problem, but the

computational expense introduced by including noise in the generic vehicle

formulation requires a modification of his methodology. Exhaustive design space

exploration for a high-fidelity vehicle-level model is impractical, and instead

surrogate-based optimization techniques are proposed to exchange fidelity for

computational speed.

Fleet classification into generic vehicle classes is accomplished through

discriminant analysis, and the characterization of generic vehicle accuracy is

reformulated as distributions of relative errors for each metric across a subset of

airports. The distributions are characterized by the mean and the variance of

these relative errors. Optimization of the generic vehicles is accomplished through a

simplified test structure that decouples the mean and the variance such that the ideal

generic vehicle matches the airport average for each target metric simultaneously.

The generic vehicles can then be characterized by a single output for each metric,

which allows for the construction of surrogate models mapping vehicle-level input

parameters to airport-level metrics. Multiobjective optimization is accomplished by

mapping each metric to desirability functions on a zero-to-one scale and combining

these functions into an overall desirability score that is the geometric mean of the

individual desirabilities. This overall desirability represents a single objective which

enables the use of traditional optimization techniques.

Subsequent tests that reintroduce operational complexities no longer feature the
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convenience of a single-output per metric, and thus the surrogate models can no

longer be used. For these tests, only a subset of best generic vehicle alternatives

from previous tests are carried forward and evaluated against each other using

multicriteria decision making techniques. Finally, a grid-based method is introduced

for pre-calculating population counts using Voronoi tessellation, intersections with

2010 Census block polygons, and area-weighted equations. This method requires

a one-time pre-processing of population distributions at each airport to allow for

instantaneous calculations of population exposure for any noise computations at

these airports.

3.1 Modification of Average Generic Vehicle Methodology

The steps in Becker’s methodology successfully identified input parameter settings

for the best per class average generic vehicles, but his approach depended on design

space exploration and enumeration of many alternatives. While Becker attempts

to exhaustively explore the vehicle-level parameter design space to observe the

impacts on each metric simultaneously, his approach could have been formulated

as a mathematical optimization problem. The goal is to minimize the magnitude of

the relative error with respect to targets generated from the actual fleet, as shown in

Equation (18):

minimize
Xi

f(Xi) = ηY =

∣

∣

∣

∣

YGV − YTarget

YTarget

∣

∣

∣

∣

(18)

Where:

Xi = Input parameter settings for ith generic vehicle class

ηY = Magnitude of relative error for metric Y with respect to targets
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YGV = Fleet-level aggregated metric for fleet of generic vehicles

YTarget = Fleet-level aggregated target metric for actual fleet

The input parameters in the physics-based model for each generic vehicle class

(Xi) are selected in a manner that minimizes the fleet-level error for each metric.

This optimization problem must be conducted for all of the metrics simultaneously,

but each generic vehicle class can be optimized independently. For Becker’s problem,

computations of vehicle-level fuel burn and NOx emissions for each alternative are

computationally inexpensive which enables brute force exploration of the entire design

space. The vehicle-level results for each alternative are very simply mapped to

fleet-level results as a function of flight distances and number of operations, and

thus the fitness of every alternative can quickly be determined and filtered to identify

the input parameter settings that simultaneously balance fitness across all metrics.

The addition of noise analysis prohibits this brute force approach due to the

increased computation time associated with noise grids. A modification of Becker’s

method is thus required that still enables exhaustive design space exploration

with reasonable computation times, but also leverages optimization techniques.

Conventional optimization algorithms often require many objective function calls per

run. As modeling and simulation capabilities and the corresponding computational

expenses have increased in recent years, there has been a recent push in academics

and industry towards surrogate-based optimization (SBO) techniques. These

SBO techniques replace direct optimization of expensive high-fidelity models with

iterative refinement and reoptimization of a coarser low-fidelity model that is less

computationally demanding [94]. The most popular surrogate models are polynomial

response surfaces, kriging, support vector machines, space mapping, and artificial

neural networks [95]. The optimal alternatives from the low-fidelity model can
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always be verified in the high-fidelity model regardless of the choice of surrogate, but

the use of the surrogate avoids the unnecessary expense associated with computing

intermediate alternatives in the high fidelity model that fall between the initial guess

and the final convergence of the optimizer.

These SBO techniques represent another method of exchanging fidelity for

computational speed. To include noise in the generic vehicle methodology, Becker’s

approach should be modified to leverage these low-fidelity models. The steps for this

modified methodology are as follows:

1. Calculate targets representing the aggregate performance per generic vehicle

class for each environmental metric of interest.

2. Conduct effect screening to determine which input parameters are in fact the

most influential on the relevant vehicle-level metrics.

3. Create designs of experiments from the reduced set of influential input parameter

settings.

4. Evaluate the designs of experiments in the high-fidelity vehicle-level model and

collect the metric performance for each alternative.

5. Create surrogate models that map these metrics to a fitness function leveraging

multicriteria decision making techniques to identify alternatives that best match

the metric targets.

6. Optimize the input parameter settings using the surrogate model.

7. Verify the optimized input parameter settings through evaluation in the

high-fidelity model and comparison against fleet-level targets.

The first few steps are identical to Becker’s methodology, but the use of surrogate

models, multicriteria decision making, and optimization constitute new approaches
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that are necessitated by the additional computational expense associated with noise

analysis. This new methodology also differs from Becker’s in the statistical approach

to aircraft classification, the airport-level characterization of the problem, and the

operational simplifications necessary to enable the surrogate-based optimization.

3.1.1 Multiclass Classification Method for Generic Vehicles

Previous methods for fleet classification have relied on one or two metrics (payload

and range) to assign aircraft to groups. While these metrics can delineate aircraft

that fly similar route types, this does not serve to minimize the performance variance

within a group. To accomplish this, the classifications must be defined using a vector

of the actual performance metrics.

There are a wide variety of multiclass classification methods in the literature.

Some of these methods are extensions of more classical binary classification problems,

including neural networks, decision trees, and k-nearest neighbors. In some cases, the

multiclass problem can be converted into a set of binary classification problems with

traditional methods like support vector machines. An example of a more traceable

method designed specifically for the multiclass problem is hierarchical clustering.

Hierarchical clustering techniques begin with every aircraft assumed to be its own

cluster, and at each step the two closest clusters are joined, reducing the total number

of clusters by one [90]. This method is highly dependent on its sequential nature, does

not give any indication as to when to stop the groupings, and does not take advantage

of heuristic understanding of what these groups should approximately look like.

For this work a technique referred to as linear discriminant analysis is suggested.

Discriminant analysis is a method for predicting misclassifications among a priori

groups of multivariate observations [96]. The method is built on linear algebra,

principal component analysis, and multi-response permutation tests. The math for
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discriminant analysis is complicated, but the basic steps for the context of the aircraft

classification problem are as follows:

1. Collect performance metrics for every unique aircraft in the fleet and assign

each to a class (a priori group).

2. For each aircraft, perform a “leave-one-out” cross-validation method where the

aircraft is removed from the analysis, and must be allocated to a group as if it

were a new observation.

3. Define a set of canonical axes that are linear combinations of the performance

metrics that best distinguish the different a priori groups (minus the removed

aircraft).

4. Calculate the Euclidean distance in the canonical space between the “new”

observation and the centroids of each of the groups to determine the probability

of classification in each group.

5. Repeat for every aircraft and determine which are correctly classified and which

may be misclassified.

6. Reassign any misclassified aircraft to the appropriate group and repeat the

process until there are no more misclassifications.

A notional canonical plot of the top two canonical variables is demonstrated in

Figure 23. This example is for a representative problem included as part of the

statistical software JMPTM, but it visually demonstrates how discriminant analysis

works. The example defines three groups using four descriptive variables. Canonical

variables are constructed through linear combinations of the four variables with

standardized coefficients for each. The standardized coefficients are used to offset

differing scales among the variables [97]. The first canonical variable is the most
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discriminating, meaning that the centroids between the different groups are spread

out as much as possible in terms of variance. In this way, defining the canonical or

discriminant variables amounts to finding principal component subspaces of the group

centroids themselves [98].
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Figure 23: Notional Canonical Plot for Discriminant Analysis

As can be seen, some of the color-coded groups are well defined by these two
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canonical variables, but other groups overlap so closely that there is a greater

possibility of misclassification. The small circles represent 95% confidence intervals

for the group centroids, and the larger circles contain 50% of the members in each

group. The closer these circles are to each other in the canonical plot, the poorer the

distinction between the groups and the higher likelihood of misclassification. In the

discriminant scores table, the probability of misclassification is reported as well as

the most likely class assignment. If the probability of assignment to another class is

greater than the probability of assignment to the a priori class, then that alternative

becomes a candidate for reclassification. The discriminant analysis must be repeated

after reclassification because these canonical variables and the resulting canonical

plots change with each iteration.

This method was chosen due to the advantage of pre-defining the number of

groups (the six vehicle classes) and the ability to leverage heuristic knowledge

of competitive aircraft with similar physical and performance characteristics for

the a priori assignments. The heuristics allow for a good starting guess such

that the method converges in only a few iterations, and the method is built on

traceable statistical analysis aimed at reducing in-class variance with respect to the

performance metrics.

3.1.2 Airport-Level Characterization

The optimization problem posed in Equation (18) characterizes the fleet-level

performance of the generic vehicles for each metric as a single aggregate value

compared against a single aggregate target. Research question 2 and the

corresponding hypothesis dictate a need for accuracy at each airport, which implies

that generic vehicle performance cannot be characterized by single aggregate metric

values but rather by distributions of metric values across a subset of airports. The
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fitness of a particular generic vehicle model must be evaluated by comparing against

target metrics at each airport. This can create difficulties when trying to implement

optimization techniques which typically require a single objective function.

One common approach for evaluating model accuracy across multiple sample

values is the use of root mean squared error (RMSE). When comparing two data

sets (one set from theoretical prediction and the other from actual measurement),

the RMSE of the pairwise differences of the two data sets can serve as a measure of

how far on average the error is from zero [99]. In the context of the generic vehicle

problem, RMSE across a subset of n airports is defined as follows:

RMSE =

√

√

√

√

1

n

n
∑

a=1

(YGV,a − YTarget,a)
2 (19)

Where:

YGV,a = Aggregated metric for fleet of generic vehicles at unique airport a

YTarget,a = Aggregated target metric for actual fleet at unique airport a

While RMSE represents a single value for optimization, it is a scale-dependent

measure [100]. Given that the optimization problem actually includes multiple metrics

each with different scales, it becomes difficult to compare RMSE between metrics

or to formulate a multiobjective optimization problem that isn’t biased towards a

specific metric. Becker used relative error to avoid this bias, but for the airport-level

formulation relative error must be defined on a per-airport basis. The distribution of

relative error for each metric can then be characterized by the mean and variance of

this relative error across the subset of airports as shown in Equation (20):
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YGV,a = f (XRJ , XSSA , XLSA , XSTA , XLTA , XV LA )

ηa,Y =
YGV,a − YActual,a

YActual,a

µY =
1

n

n
∑

a=1

ηa,Y

σ2
Y =

1

n

n
∑

a=1

(ηa,Y − µY )
2

(20)

Where:

Xi = Input parameter settings for ith generic vehicle class

ηa,Y = Relative error for metric Y at unique airport a

µY = Mean error for metric Y across subset of airports

σ2
Y = Variance of error for metric Y across subset of airports

This characterization measures the generic vehicle performance for each metric

on a common scale, but each metric is represented by two measurements (mean and

variance) instead of one. In principle, the RMSE for the relative errors, ηa,Y , could be

used for optimization of a single value per metric, but the relative errors at smaller

airports tend to be magnified relative to the larger airports due to smaller target values

in the denominator. Thus, this approach would unnecessarily bias the optimization

towards better accuracy at smaller airports.

Instead, a multi-tiered approach is proposed where first the variance and then

the mean of these relative error distributions are minimized. The variance within a

class shall be minimized through the previously discussed statistical classification

of the actual fleet into performance-based vehicle classes. The mean error for each
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metric across the subset of airports shall then be minimized by optimizing the input

parameter settings for each generic vehicle model.

3.1.3 Method for Optimization of Average Generic Vehicles

Once the aircraft are assigned to the appropriate vehicle classes, a series of validation

tests must be formulated to trace the different sources of operational variability. The

test structure outlined in Table 10 sequentially adds more complexity such that the

impact of each can be independently understood.

Table 10: Average Generic Vehicle Test Specifications

Test ID Distributions Mission Lengths
Operational
Volumes1

Runway Layouts2

A Isolated Classes
Most Common
Stage-Lengths

2000 Ops per
airport

Single Runway

B Isolated Classes
Discretized

Stage-Lengths
2000 Ops per

airport
Single Runway

C
Combined
Classes

Discretized
Stage-Lengths

2000 Ops per
airport

Single Runway

D
Combined
Classes

Discretized
Stage-Lengths

Actual Airport
Volumes

Single Runway

E
Combined
Classes

Discretized
Stage-Lengths

Actual Airport
Volumes

Actual Runways

F
Combined
Classes

Discretized
Stage-Lengths

Randomly
Scaled Ops

Actual Runways

1 Assumes 50% split between approach and departure operations
2 Assumes uniform runway utilization with cross-flow

Test A is formulated to isolate the impact of the operational distributions of the

constituent vehicles within each of the vehicle classes. Each vehicle class is tested
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separately, so Test A actually comprises multiple tests. For each of the Test A class

tests, it is assumed that all of the operations at each airport consist only of the relevant

class being tested. The only source of variability in the target metrics from airport to

airport is due to the percent distributions of each constituent vehicle within the class.

The advantage of this formulation is that each of the generic vehicle alternatives is

characterized by a single value for each metric. For a given metric, the quantity YGV,a

is identical for each unique airport a because the generic vehicle is allotted all of the

scheduled flights, whereas the quantity YTarget,a is unique for each unique airport a.

As a result, the relative error distributions for each metric calculated using Equation

(20) feature identical variance for each generic vehicle alternative. The objective can

now be simplified to minimizing the mean relative error for each metric.

A mean relative error of zero corresponds to the case when the generic vehicle

performance matches the average target metric across the subset of airports (with

respect to the Test A specifications). This ideal generic vehicle performance with

respect to a given metric is represented in Equation (21):

YGV,ideal = µTarget =
1

n

n
∑

a=1

YTarget,a (21)

Where:

YGV,ideal = Aggregated airport-level metric for ideal generic vehicle model

µTarget = Average target metric for actual fleet across a subset of airports

YTarget,a = Aggregated target metric for actual fleet at unique airport a

This formulation makes the optimization problem much more tractable because

the input parameter settings for each generic vehicle model can be mapped to a
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single value per airport-level metric (f (Xi) → YGV ), enabling the use of surrogate

models. There are many potential choices for surrogate models, but artificial

feed-forward neural networks are suggested given the unknown functional forms

relative to the input parameters. A neural network is a two-stage regression model

typically represented by a network diagram as shown in Figure 24:

Figure 24: Diagram of Feed-Forward Neural Network

Derived hidden nodes, zm, are created from linear combinations of the input

parameters fed into an activation function, φ(v). The activation function is typically

a sigmoid function (φ(v) = 1
1+e−v ), but other activation functions are possible. Then

each metric, Yk, is modeled as a function of linear combinations of the hidden nodes

as shown in Equaation (22) [98].
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zm = φ
(

α0m + αT
mXi

)

, m = 1, ...,M

Yk = β0k + βT
k Z, k = 1, ..., K

(22)

Where:

zm = Derived function for mth hidden node

φ = Activation function (sigmoid)

αm = Vector of linear weights applied to inputs for mth hidden node

Xi = Vector of input parameter settings for ith generic vehicle class

M = Total number of hidden nodes

Yk = Output unit for kth metric

βk = Vector of linear weights applied to hidden nodes for kth metric

Z = Vector of hidden nodes

K = Total number of metrics

The number of hidden nodes is flexible, but for model accuracy it is better to have

too many than too few [98]. More hidden nodes, however, require more iterations for

training the models, and they can also be more computationally expensive function

calls when used with an optimizer. Thus, as always, fidelity and speed must be

balanced. The unknown parameters in Equation (22) are the weights applied to the

input parameters (αm) and the weights applied to the hidden nodes (βk). These

unknowns are determined by sufficiently sampling the high-fidelity model, using a

majority of the samples as training data and reserving some samples for validation.

Sum of squared errors with respect to the actual outputs from the high-fidelity model
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are used as a measure of fit with respect to both training and validation data, as is

common for regression models.

The network diagram in Figure 24 shows the input parameters mapped to multiple

metrics, and the ideal generic vehicle must satisfy Equation (21) for all of these metrics

simultaneously. Given the different scales for the different metrics, scalarization

is necessary. This can be accomplished by defining “desirability functions” for

each metric such that each metric is mapped to a common scale. The ideal metric

value from Equation (21) should map to a maximum desirability. The further the

performance of the generic vehicle alternative strays from this ideal, the lower the

desirability score. A notional example of a desirability function is shown in Figure 25:

0 0.5 1

Desirability

Figure 25: Notional Desirability Function for Generic Vehicle Target

The desirability function in Figure 25 resembles a Gaussian curve. The peak of

the curve coincides with the mean of the target distribution, as defined in Equation

(21), and maps to a maximum desirability score of one. In this example, the bounds

of the desirability function are set by the standard deviations of the target metrics.

In this manner, if the deviation of the generic vehicle performance from the ideal is

greater than the standard deviation observed for the target metrics across the subset
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of airports, the generic vehicle alternative is assigned a desirability score of zero. By

formulating the desirability functions in this manner, each metric can be mapped to

a common scale with each desirability function normalized by the existing variation

across the subset of airports. This mapping assumes a uniform weighting for the

importance of each metric, but practically other weightings could be explored by

adjusting the bounds of each desirability function. Wider bounds implies a greater

tolerance of error for a given metric, whereas narrower bounds implies a requirement

for greater accuracy.

With each metric mapped to a common scale, the desirability scores can be

combined to define a single-objective. An arithmetic mean of the individual

desirability scores would provide a single-objective, but this formulation could

potentially over-value a generic vehicle alternative that balances very bad accuracy in

one metric with very good accuracy in another. Instead, an overall desirability score

that is the geometric mean of the individual desirability scores is proposed. The

geometric mean is less forgiving to generic vehicle alternatives that struggle for any

one metric. Thus, the optimization problem can now be posed in terms of maximizing

this overall desirability, as shown in Equation (23):

maximize
Xi

D =
k

√

√

√

√

k
∏

j=1

dj

such that min BPRi ≤ BPRXi
≤ max BPRi

min OPRi ≤ OPRXi
≤ max OPRi

min Thrusti ≤ ThrustXi
≤ max Thrusti

(23)

Where:

Xi = Vector of input parameter settings for ith generic vehicle class
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dj = Desirability score for jth metric

D = Overall desirability score (geometric mean of metric desirabilities)

BPRi = Vector of bypass ratio values in ith generic vehicle class

OPRi = Vector of overall pressure ratio values in ith generic vehicle class

Thrusti = Vector of sea-level static thrust values in ith generic vehicle class

BPRXi
= Generic vehicle bypass ratio as f(Xi)

OPRXi
= Generic vehicle overall pressure ratio as f(Xi)

ThrustXi
= Generic vehicle sea-level static thrust as f(Xi)

Equation (23) also subjects the input parameter settings to constraints on the

final engine design. The purpose of these constraints is to ensure that the generic

vehicle actually resembles the constituent vehicles within its class. If the optimizer

were unconstrained, it could potentially find input parameter settings that match the

target metrics but with infeasible engine designs. Technologies applied to this baseline

generic vehicle with infeasible engines might lead to unrealistic or misleading levels

of improvement. The constraints bound the OPR, BPR, and sea-level static thrust of

the generic vehicle by the range of values observed for the constituent aircraft within

the class.

The optimization problem shall be executed on the surrogate models, but results

must be verified in the high-fidelity model. Even the most accurate surrogate model

is still an approximation of the actual model, so the best input parameter settings

from the optimization may not be as fit once verified in the high-fidelity model.

Furthermore, the optimization is performed with respect to the Test A specifications,

but the resulting generic vehicles must also be validated against each of the subsequent

test specifications. Thus the goal of the optimization should not be to find a global
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maximum of overall desirability for each generic vehicle class, but rather to populate

a subset of fit alternatives for each class.

To accomplish this, Monte Carlo simulations should be used to broadly explore

the design space and identify promising combinations of the input parameter settings.

The surrogate models make these simulations computationally cheap such that the

space can be explored at a high resolution. Thousands of input parameter settings

can be instantaneously evaluated and ranked by overall desirability score. Only

the top ranking alternatives need to be verified in the high-fidelity model, but it

is anticipated that equally good or possibly better input parameter settings exist

nearby in the design space. A focused design of experiments that slightly perturbs

the input parameter settings around the top few alternatives from the Monte Carlo

simulations on the surrogate models should be able to identify these potentially

better alternatives.

3.1.4 Multicriteria Decision Making (MCDM)

Test A decouples the mean and the variance to enable the single-output formulation

of the generic vehicle problem, but each of the successive tests does not feature this

decoupling. Thus, the surrogate-based optimization approach can only be applied

for Test A. Hypothesis 3 suggests that the best alternatives from Test A will still

perform well for each of the subsequent tests, but for Tests B-F each alternative must

be evaluated against each other which requires a comparison of error distributions

for multiple metrics. Thus, a decision making technique is required that can evaluate

multiple criteria each defined by distributions as opposed to single values.

In practice, any MCDM technique that meets this requirement can be used, but

for this work Stochastic Multicriteria Acceptability Analysis (SMAA) was chosen.

The technical approach does not hinge on this specific method, and thus only a brief
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description is included here. A more detailed discussion of SMAA is included in

Appendix A. Not only can this method accept distributions for each criterion, it

also doesn’t require preference information. Most MCDM techniques take preference

information from a decision maker and evaluate alternatives with respect to these

weightings. SMAA is described as an inverse multicriteria decision aiding technique,

meaning the method provides descriptive measures for each alternative as opposed to

simply ranking the alternatives. This is accomplished by evaluating multidimensional

integrals with respect to the weight space and the criteria distributions to explore

how each alternative may be ranked given different preferences for each metric, thus

providing a decision maker with more detail and transparency.

The best alternatives from Test A and the perturbed design of experiments shall

be evaluated against each other with respect to Test B specifications. A handful of

the best alternatives from each generic vehicle class with respect to Test B shall be

down-selected and carried forward for Tests C-F. These combined class tests shall

compare full-factorial fleet combinations of the most fit alternatives from each class,

once again using this SMAA formulation.

3.1.5 Summary of Approach to Generic Vehicles

Becker’s original average generic vehicle methodology shall be modified to leverage

surrogate-based optimization techniques. The performance variance within each

generic vehicle class is minimized using discriminant analysis, and the generic vehicle

optimization problem is characterized by minimizing the mean error across the

subset of airports. Operational simplifications allow the vehicle-level input parameter

settings for each generic vehicle class to be mapped to airport-level metrics, which

enables the construction of surrogate models for each metric. Mappings of these

output metrics to desirability functions reduces the multiobjective optimization

95



www.manaraa.com

problem to a more tractable single-objective of maximizing the overall desirability

score. Monte Carlo simulations on the surrogate models identify promising

combinations of the input parameter settings for each generic vehicle class.

These best input parameter settings shall be verified in the high-fidelity

vehicle-level model, and other fit alternatives are identified by slightly perturbing the

input parameters. Only a subset can be carried forward because these subsequent

tests introduce more operational complexities such that the surrogate models can no

longer be used. For these more complex tests, an alternative multicriteria decision

making technique shall be used to evaluate criteria characterized by distributions

instead of single values. The best alternatives from each class shall be down-selected,

and full-factorial combinations of these alternatives shall be explored to identify the

best generic fleet.

3.2 Method for Rapid Computation of Community Noise

Exposure

All of the preceding discussions on noise have focused on the DNL contour areas and

shapes. As previously mentioned, the true noise metric of interest is the population

exposed to this significant noise, which can be determined by overlaying these contours

on maps of Census population densities. Assessing population exposure is one of the

primary motivations for including Esri’s ArcGIS R© framework at the core of the AEDT

system [11]. For a rapid airport-level noise computation tool like ANGIM, however,

it is too cumbersome to import contours for every potential scenario into ArcGIS R©

for performing these population exposure counts.

Instead, a population grid method is proposed which exports Census block

population to a grid conforming to the grid dimensions of the airport-level noise

analysis. The reference grids are imported into ArcGIS R© and geospatially aligned

with a given airport runway endpoint. Each grid point is converted to a “Thiessen
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polygon” via the Voronoi tessellation method [101]. The method of Voronoi

tessellation generates polygons from a set of points that are mathematically defined

by the perpendicular bisectors between all of the points. Each resulting polygon

can be mapped to a single seed point, and the boundaries of these polygons are

defined such that every point within the polygon has the smallest Euclidean distance

with respect to that seed point as compared to any of the other seed points. A

notional example of Voronoi tessellation for a seed of twenty points generating twenty

polygons is shown in Figure 26.

Figure 26: Notional Example of Voronoi Tessellation [102]

By using a grid of evenly spaced points conforming to the resolution of the

noise analysis as the seed points for the Voronoi tessellation, the resulting Thiessen

polygons are each a 0.08 nmi by 0.08 nmi square with the grid point at the center, as

is notionally depicted in Figure 27. These square Thiessen polygons are intersected

with the Census block polygon shapefiles. If a Census block boundary crosses a

square Thiessen polygon, the latter is split into multiple polygons as is depicted
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in Figure 27. The irregular shaped polygon in Figure 27 represents a 2010 Census

block polygon, and the intersection of this polygon with one of the square Thiessen

polygons is outlined.

Figure 27: Intersection of Census Block and Thiessen Polygons

The population counts for the polygons resulting from the intersection operation

can be calculated using the area-weighted formula in Equation (24):

Pop intersect =
Area intersect

Area block

· Pop block (24)

Where:

Pop intersect = Population count for polygon resulting from intersection

Pop block = Population count joined to 2010 Census block polygon

98



www.manaraa.com

Area intersect = Polygon area resulting from intersection

Area block = 2010 Census block polygon area

Once the population counts are determined for each of these intersected polygons,

the total population contained within the original square Thiessen polygons is

summed and these counts are assigned to the original seed points. In this manner

the 2010 Census block population counts are effectively discretized by the grid points

from the noise analysis such that the total population counts surrounding the airport

are conserved. This method takes advantage of the simpler computations associated

with the centroid method but at a finer resolution with an assumption of uniform

population distribution within a 2010 Census block polygon. Since the noise analysis

is already calculating DNL decibel levels at each of these grid points, population

exposure counts can be easily calculated by identifying which grid points are above a

given noise threshold (typically DNL 65-dB but other decibel levels can be calculated

as well) and summing the corresponding population at these grid points. In this

manner, a continuous change in the size and shape of the noise contour maps to a

continuous change in population exposure counts.

By conforming to the existing data structure in the noise model, these population

grids enhance its capability to evaluate community noise exposure with minimal

increase in run-time. To demonstrate the utility of pairing this method with the

generic vehicle approach, population exposure counts for a 2010 baseline year shall

be compared using the actual fleet of aircraft and then repeated using the final

generic vehicle designs from the previous sequence of validation tests.
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3.3 Summary of Technical Approach

While there is some flexibility in the techniques and models that can be used,

the modified generic vehicle methodology hinges on statistical classification of the

fleet, airport-level characterization of generic vehicle accuracy, and surrogate-based

optimization. These surrogates enable cheaper exploitation of the input parameter

settings for each generic vehicle class, which allows for more focused exploration in the

high-fidelity models. This focused exploration populates a subset of fit alternatives,

and multicriteria decision making evaluates these alternatives with respect to each

of the validation test specifications. Once this best generic fleet is identified, their

utility for airport-level noise analysis can be demonstrated and enhanced by adding

a method for quantifying population exposure counts that conforms to the existing

data structure in the rapid airport-level noise computation model.
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CHAPTER IV

IMPLEMENTATION

With the technical approach for optimizing the generic vehicles established, the

methodology was implemented by selecting modeling and simulation tools that

meet the previously established requirements. Discriminant analysis was carried

out to finalize the vehicle class assignments, which is visually shown to have less

in-class variance than traditional seat-class groupings. A sensitivity analysis with

respect to noise metrics was conducted on the physics-based vehicle-level model

and cross-referenced against Becker’s list of significant variables for fuel-burn and

NOx emissions to define a reduced subset of important variables. Space-filling

designs of experiments were executed, and the results were used to train feed-forward

neural networks for each metric. These surrogate models were incorporated in a

prediction-profiler environment to enable Monte Carlo simulations. Desirability scores

were calculated to identify good locations in the design space, and the performance

with respect to these input parameter settings were verified in the physics-based

vehicle-level model. Perturbed designs of experiments about these optimal locations

were explored to identify slightly better alternatives, and SMAA was used to choose

a subset of best alternatives for each class. Full-factorial combinations of these

alternatives from each class were evaluated and a best generic fleet was defined for

both the vehicle-class and seat-class based formulations.

Fleet-level results for each generic vehicle formulation were shown to be more

accurate than a traditional representative-in-class approach, with the vehicle-class

groupings proving slightly better than the seat-class groupings. The generic vehicles

were then used in conjunction with pre-processed population grids at each airport.
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These vehicles demonstrated good accuracy in population counts with respect to

the actual fleet using the same population grid method, but at a much reduced

computation time. Therefore, the generic vehicles and the population grids represent

effective exchanges of fidelity for speed that enable the screening-level framework for

assessing aviation’s environmental impacts.

4.1 Selection of Modeling and Simulation Tools

The general requirements for modeling and simulation capabilities were outlined in

Chapter 2. The types of analyses conducted in this study can be repeated with any

set of tools that satisfy these requirements, but for the purposes of demonstration

specific tools shall be selected. These tools are discussed briefly in this section.

4.1.1 Vehicle Performance Model and Schedule of Operations

The Aerospace Systems Design Laboratory (ASDL) at Georgia Tech has developed

an in-house tool referred to as the “AEDT Tester.” This tool uses the built-in

AEDT algorithms and performance modules discussed previously to rapidly generate

single-aircraft performance, fuel burn, emissions, and single-event SEL noise grids

[103]. Vehicle coefficients can be extracted from the relevant databases and run

through the AEDT Tester to capture the performance of existing vehicles. New

vehicles can also be run through this tool provided that the relevant coefficients

can be defined. The user can define unique operations, departure and arrival

airport/runway locations, and atmospheric conditions to see how the performance

of these vehicles change for different types of missions. The AEDT Tester does

introduce some simplifications, such as an assumption of straight-in and straight-out

ground tracks. However, the AEDT Tester does not incorporate the Geographical

Information System (GIS) core that the full AEDT is built on, so inclusion of
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location-specific information such as terrain and typical weather is not included.

4.1.2 Schedule of Operations and Airport-Level Computations

The AEDT Tester is still a vehicle-level tool for measuring environmental impacts of

aviation. Thus, it cannot independently serve as a fleet-level model. The vehicle-level

results from the AEDT Tester must be aggregated to generate airport-level results,

which requires the inclusion of operational volumes and schedules that track the

distribution of these operations between different vehicles as well as over different

mission ranges. The source of this operational data may vary, but fleet-level tools

often require simplification of the continuous range of mission trip lengths. One

simplification for trip-length that is commonly associated with noise analysis is

the use of a stage-length designation, as was common use for the Integrated Noise

Model and currently in use for AEDT. Stage-length designations simplify mission

trip lengths by discretizing them into nine bins. INM also defined a representative

mission range per stage-length, as is demonstrated in Table 11 [72].

Table 11: Stage Length Designations

Stage
Length

Min Distance
[nmi]

Max Distance
[nmi]

Representative
Mission

Range [nmi]

1 0 500 350
2 501 1000 850
3 1001 1500 1350
4 1501 2500 2200
5 2501 3500 3200
6 3501 4500 4200
7 4501 5500 5200
8 5501 6500 6200
9 6501 - 7200

To simplify the operations and to assure proper comparison of the impacts of
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fuel burn, NOx, and noise, the gate-to-gate flights shall also be discretized by

stage-length. Fuel burn and NOx measurements will be restricted to operations at the

representative mission ranges listed in Table 11. With this simplified operations set,

aggregate fuel burn and NOx can be calculated using vehicle-level performance for

each stage-length and simple spreadsheet calculations that link the performance to a

schedule of operations. This can be done for both the total-mission and terminal-area

metrics. DNL noise grids and contours, however, have an additional dependence on

runway configuration and utilization. This contributes to the spatial nature of this

metric, and thus an additional capability is required to aggregate noise.

Bernardo formulated ANGIM to satisfy all of his requirements for an airport-level

noise model, and if the schedules used by ANGIM can simultaneously be linked

to spreadsheet aggregations for fuel burn and NOx, the additional requirements

introduced in this work can also be met. Therefore, the airport-level tool for this

work will actually be an integration of the AEDT Tester, ANGIM, and Excel

spreadsheet aggregations for fuel burn and NOx.

4.1.3 Physics-Based Vehicle-Level Model with Technology Infusion
Capabilities

At the Georgia Institute of Technology, the issuance of the CAEP goals led to the

development of the Environmental Design Space (EDS). EDS is a tool developed by

Georgia Tech’s Aerospace Systems Design Laboratory (ASDL) for the U.S. Federal

Aviation Administration’s Office of Environment and Energy (FAA/AEE) as part

of a comprehensive suite of software tools that allows for a thorough assessment

of the environmental effects of aviation [104]. EDS provides the capability to

generate an integrated analysis of aircraft performance, source noise, and exhaust

emissions at the aircraft level for potential future aircraft designs under different

policy and technological scenarios. The integrated analysis enables the assessment
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of the interdependencies and associated trade-offs between aircraft performance,

noise and emissions in a transparent and traceable manner. EDS employs mostly

physics-based, integrated, multidisciplinary modeling and simulation that seamlessly

combines core modules originally developed by NASA coupled with design rules

and logic along with user-defined engine and airframe design parameters to create

aircraft designs. The general EDS architecture is diagrammed in Figure 28 [105].

Figure 28: EDS Architecture

The EDS environment can be thought of as executed in four phases for a

single vehicle. Phase 1 begins with the initialization steps, which establishes the

different modes and options for running EDS and determines the settings of all

the design variables. These design variables can include hundreds of different

engine, aerodynamic, weight, and geometry settings. Phase 2 is the vehicle design

phase which performs the necessary cycle analysis and then sizes the engine and

airframe. The primary modules covering engine design include the Compressor Map
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Generation (CMPGEN) program for compressor map generation, the Numerical

Propulsion System Simulation (NPSS) for thermodynamic cycle analysis, and the

Weight Analysis of Turbine Engines (WATE) for engine flow path analysis and weight

estimation [106, 107, 108, 109, 110, 111]. In this phase, there is first a design loop for

the engine and then a design loop between the engine and airframe. The engine design

loop first performs the thermodynamic cycle design with CMPGEN and NPSS at the

aerodynamic design point; integrating a multi-point design methodology to ensure

the engine meets thrust requirements at both top of climb (TOC) and take-off [112].

There are then iterations between the NPSS thermodynamic cycle and the WATE

flow path analysis until the two analyses converge. After completion of the engine

design loop, the vehicle design loop starts by running the thermodynamic cycle model

in off-design mode throughout the flight envelope to generate an engine deck for the

aircraft mission analysis. The aircraft mission analysis is performed in the Flight

Optimization System (FLOPS) for a given mission, payload, thrust to weight ratio,

and wing loading, scaling the engine deck thrust and the vehicle size to meet the

targets [113]. If the engine deck thrust is scaled, the engine design loop is executed

again with the new thrust targets. This loop is repeated until the engine does not

scale in the aircraft mission analysis. The vehicle is fixed at the end of this phase.

Phase 3 is the vehicle performance evaluation phase. In this phase all

desired performance evaluations are conducted including gaseous emissions, noise

certification, takeoff and landing performance evaluations, and fuel burn for off-design

points on a payload-range chart. Vehicle fuel burn performance for design and

off-design conditions are executed in FLOPS, while emissions are estimated based

on correlations derived from the P3-T3 method [114]. At the end of this phase, the

aircraft engine state tables from NPSS and the certification trajectories generated

from FLOPS are fed into the Aircraft Noise Prediction Program (ANOPP) to

calculate certification EPNLdB values and NPD-curves for multiple noise metrics
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[115, 116].

Phase 4 is the output data phase. Here all desired data is compiled into

user-specified summary files. EDS includes an option to generate an AEDT Tester

input file by matching the various performance tools to each of the required AEDT

coefficients, which satisfies the requirement of an interface with the fleet-level tool.

The methods for mapping EDS vehicles to the AEDT coefficients is described in

detail in de Luis’ PhD dissertation, although some modifications have been made to

match improvements and changes to the AEDT detailed model [117]. In this way, the

integrated fuel burn, NOx, and noise performance generated by EDS can be evaluated

in the integrated fleet-level tool suite in the same manner as any industry validated

vehicle defined by the relevant coefficients. This allows for the use of the AEDT

Tester as a common truth model for the existing fleet as well as future vehicles with

technology infusion.

EDS models technology infusion using a series of additive or multiplicative

factors at various levels of the analyses. These factors collectively encompass the

technology design space defined by first formally collecting technology data in terms

of its quantitative impacts and interactions with other potential technologies. The

technology data is then formally recorded into a Technology Interaction Matrix

(TIM) and Technology Compatibility Matrix (TCM) respectively. These matrices

provide both traceability and transparency to the technology modeling and auditing

process. Technology information may be gathered from publicly available literature,

including peer reviewed publications, and subject matter experts, either at NASA

or in industry. It is important to note that technology impacts are modeled at the

component level and allowed to propagate through the EDS modeling and simulation

environment in order to determine the system level benefits [118].
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4.1.4 Integrated Airport-Level Environment with Specific Tools

The Environmental Design Space will be used to explore potential average generic

vehicle designs. These vehicles will serve as technology testbeds to project the

performance of future vehicles with advanced technologies, such as those currently

being studied by the CLEEN and ERA programs. Given the selection of specific

tools, the notional diagram in Figure 21 can now be updated with the specific tools

used for this study as shown in Figure 29. This integrated environment will be used

for optimization of the average generic vehicles.

Figure 29: Integrated Airport-Level Environment with Specific Tools

4.2 Vehicle Classification through Discriminant Analysis

Before the current fleet of aircraft can be grouped into bins, some criteria must

be established to determine which vehicles should be included in the study. The

generic vehicle models are intended to serve as a representative replacement vehicle

for future years when older vehicles are retired. Many of the vehicles that are

currently out-of-production are being phased out because they are unreasonably

loud or have very poor fuel economy relative to the current state-of-the-art vehicles.

It is reasonable to assume that a new vehicle introduced in future years will have
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performance more comparable to current in-production vehicles rather than the

obsolete out-of-production vehicles, thus only in-production vehicles were included.

This significantly reduced the fleet to the important and relevant aircraft. The

vehicles must also have a significant number of operations and be significant

contributors to aggregate fuel burn, emissions, and noise. This criteria eliminated

most non-commercial aircraft such as general aviation aircraft, vehicles with fewer

than 20 passengers, and turboprop aircraft.

Fuel burn and NOx masses for total mission, terminal area departure, and terminal

area approach for existing aircraft were calculated using the AEDT tester. For noise

quantification the end goal requires that the combinations of generic vehicles should

be able to match DNL contours for a given airport with a given schedule, but for

the purposes of vehicle grouping the focus must remain on a vehicle-level metric such

as the SEL contours. Measurements of SEL contours provide insight into the noise

footprint of individual vehicles. Groupings focus on contours from SEL 70-dB to SEL

85-dB, as these SEL values at the vehicle level correlate well with the DNL 55-dB and

65-dB contours for a busy reference airport with 2,000 daily operations, as determined

mathematically using Equation (15) in Chapter 2. In order to capture the size and

extent of the contours, the metrics of interest are the contour areas, the maximum

widths of the contours, and the maximum lengths.

With the fleet trimmed down to relevant in-production aircraft and given the

metrics above, the performance of these vehicles can be compared and used for

groupings. Different vehicles have different design ranges and thus to compare all of

the vehicles on similar grounds, a short stage-length 1 mission of 350-nmi with the

mission profile shown in Figure 30 was chosen. The mission represents a straight

flight from an airport at sea-level static atmospheric conditions to another airport at

sea-level static atmospheric conditions, cruising at 35,000 ft.
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Figure 30: Common Stage-Length 1 Mission Profile

The performance metrics were collected for all of the aircraft in the fleet and

used for discriminant analysis. Aircraft were assigned to groups based on heuristic

knowledge and intuition. For example, the Airbus A320 and A321 vehicles should

likely be classified in a group with its competitors, the Boeing B737-8 and B737-9

vehicles, based on similar geometries, passenger capacities, and mission profiles.

Once the a priori assignments were made and discriminant analysis was carried

out, parallel plots were created to visually examine the remaining variability and

determine if any of the groups needed to be disaggregated into two groups. A

parallel plot, sometimes referred to as a parallel coordinate plot, is a common way of

visualizing and analyzing high-dimensional and multivariate data. The visualization

is closely related to time-series visualization, except that it applies to data where

the vertical axes do not correspond to points in time. These axes represent each

of the different metrics, and thus different trends and patterns can be identified by

rearranging the order of the metrics. The vertices of each vertical line represent the

minimum and maximum values for that metric amongst all of the alternatives, with

the line representing a linear scale between these extremes. For example, if the line

associated with an alternative crosses the vertical line for a metric at its midpoint, the

value of the metric for that alternative is equal to the midpoint between the minimum
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value and maximum value, or the minimum value plus 50% of the range. Lines that

cluster close together represent alternatives with similar metric values, whereas lines

that bound a larger area represent alternatives with greater variability with respect

to the metric values.

For the parallel plots that follow, the various groups are plotted separately for

increased visual clarity. It should be noted that the original vehicle-class groupings

included both a Small Regional Jet (SRJ) and a Large Regional Jet (LRJ) class,

but eventually the vehicles in the SRJ class were deemed out-of-production and not

included in the generic vehicle exercise. Further research on market forecasts for

regional jet aircraft showed that these smaller designs are in fact being phased out

in favor of larger regional jet designs due to the projected increases in passenger

demand for short-range flights [119, 120, 121, 122]. Therefore the SRJ vehicles were

reclassified as out-of-production vehicles, and only the LRJ vehicles were carried

forward. Henceforth, the LRJ class shall simply be referred to as the RJ class, which

corresponds to the LRJ class in the parallel plots. The parallel plots for the vehicle

classes are shown in Figure 31 whereas the equivalent parallel plots for the seat classes

are shown in Figure 32. The aircraft are color-coded by their vehicle-class assignments

to visually demonstrate that the seat classes include a broad range of vehicle types.

While the metrics represented by the vertical lines are listed in groups in the figures

to reduce the clutter on the horizontal axis, the vertical lines from left-to-right are as

follows:

1. Maximum Range [nmi]

2. Maximum Payload [metric tons]

3. Total Mission Fuel-Burn [kg]

4. Departure Terminal-Area Fuel-Burn below 3,000-ft [kg]
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5. Approach Terminal-Area Fuel-Burn below 3,000-ft [kg]

6. Total Mission NOx Emissions [g]

7. Departure Terminal-Area NOx Emissions below 3,000-ft [g]

8. Approach Terminal-Area NOx Emissions below 3,000-ft [g]

9. Departure SEL 70-dB Contour Area [nmi2]

10. Departure SEL 70-dB Contour Maximum Width [nmi]

11. Departure SEL 70-dB Contour Maximum Length [nmi]

12. Departure SEL 75-dB Contour Area [nmi2]

13. Departure SEL 75-dB Contour Maximum Width [nmi]

14. Departure SEL 75-dB Contour Maximum Length [nmi]

15. Departure SEL 80-dB Contour Area [nmi2]

16. Departure SEL 80-dB Contour Maximum Width [nmi]

17. Departure SEL 80-dB Contour Maximum Length [nmi]

18. Departure SEL 85-dB Contour Area [nmi2]

19. Departure SEL 85-dB Contour Maximum Width [nmi]

20. Departure SEL 85-dB Contour Maximum Length [nmi]

21. Approach SEL 70-dB Contour Area [nmi2]

22. Approach SEL 70-dB Contour Maximum Width [nmi]

23. Approach SEL 70-dB Contour Maximum Length [nmi]

24. Approach SEL 75-dB Contour Area [nmi2]
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25. Approach SEL 75-dB Contour Maximum Width [nmi]

26. Approach SEL 75-dB Contour Maximum Length [nmi]

27. Approach SEL 80-dB Contour Area [nmi2]

28. Approach SEL 80-dB Contour Maximum Width [nmi]

29. Approach SEL 80-dB Contour Maximum Length [nmi]

30. Approach SEL 85-dB Contour Area [nmi2]

31. Approach SEL 85-dB Contour Maximum Width [nmi]

32. Approach SEL 85-dB Contour Maximum Length [nmi]
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A comparison of the parallel plots shows the advantage of grouping vehicles

through discriminant analysis on the vector of performance metrics versus traditional

seat-class groupings, as the latter feature much wider variability per class. This is

demonstrated more specifically in Figure 33 by plotting the mission fuel burn and

the departure noise contours corresponding to a stage-length 4 mission for aircraft in

the fleet classified in Seat Class 6 (SC6).
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Figure 33: Stage-Length 4 Mission Comparison for Seat Class 6 Aircraft

Names of the specific vehicles are purposely removed to protect potentially

sensitive data. All five of these vehicles have possible internal seat configurations

that fall within the 210-300 passenger range, but the performance of these aircraft

vary widely. Only vehicles 2 and 3, however, would be characterized as Small Twin

Aisle (STA) vehicles. An average SC6 generic vehicle must balance the frequency

weighted performance of all five of these vehicles, whereas an average STA generic

vehicle would only have to balance the frequency weighted performance of vehicles

with similar fuel burn and noise characteristics as vehicles 2 and 3.

The generic vehicle tests that follow were performed in parallel for both the

vehicle classes and the seat classes. The generic vehicle engines must be bounded by

the ranges of observed values of the constituent vehicles for each class. The engine
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constraints for the vehicle classes and seat classes are shown in Tables 12 and 13,

respectively.

Table 12: Vehicle Class Engine Constraints

Vehicle Class
SLS Thrust
Uninstalled

[lbf]
OPR BPR

Min Max Min Max Min Max

SRJ 7420 8350 17.2 19.06 4.72 5.23
LRJ 12670 13420 22.15 23.8 5.13 5.13
SSA 17400 27000 22.6 27.69 4.81 6.00
LSA 24200 32010 25.78 33.44 4.46 6.00
STA 48000 71110 23.4 35.8 4.2 5.2
LTA 74910 115530 32.2 42.24 5.7 8.6
VLA 56000 62000 28.37 34 4.2 5.1

Table 13: Seat Class Engine Constraints

Seat Class
SLS Thrust
Uninstalled

[lbf]
OPR BPR

Min Max Min Max Min Max

SC2 7420 8350 17.2 19.06 4.72 5.23
SC3 12670 25000 22.15 26.6 5.09 6.00
SC4 20600 50000 22.6 33.44 4.46 6.00
SC5 24200 68000 23.4 34.0 4.2 6.00
SC6 29990 97300 23.4 41.52 4.2 8.6
SC7 56000 115530 28.37 42.24 4.2 8.44
SC8 56000 115530 28.37 42.24 4.25 7.08
SC9 57160 115530 30.13 42.24 5.1 7.08

4.3 Input Parameter Reduction through Sensitivity

Analysis

Becker also used EDS as his physics-based vehicle-level model, and he compiled

an exhaustive list of parameters that significantly impacted fuel burn and NOx

emissions for both total mission and terminal area metrics [44]. A similar sensitivity
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analysis was conducted on EDS to determine if any additional input parameters

should be included when constructing surrogate models for noise.

4.3.1 Identifying Design Variables

Within the EDS architecture, ANOPP is the tool used to estimate source noise and

calculate the resulting Noise-Power-Distance data necessary for quantifying the SEL

grids. In order to identify the necessary design variables to include in the sensitivity

analysis for noise metrics, a thorough examination of the ANOPP input file structure

proved necessary. EDS has hundreds of possible input variables to choose from, but

not all of these variables actually affect ANOPP inputs. Miscellaneous variables such

as passenger compartment lengths or the number of passengers in first class or coach

were defaulted. While airframe noise is considered a significant contributor to takeoff

and landing noise, several of the aerodynamic and airframe related variables have

redundant effects. For this reason, only a few of these variables were allowed to vary,

including aspect ratio, sweeps on the wings and tails, thicknesses, flap ratios, and

maximum lift coefficients at takeoff and landing.

The main contributors to departure noise are the engines due to the high thrust

levels required, and thus the majority of the parameters included were engine-related

variables. The ANOPP input files require the inclusion of engine cycle information

generated by NPSS, and thus a majority of the cycle-design variables were included.

ANOPP also has inputs for applying chevron geometries to the core and fan nozzles

of the engines, which directly influence the noise responses, so these variables were

included as well.

Broad variable ranges were initially defined for each of these input parameters,

and a series of tests were conducted to tighten these ranges in manner that

increased the success rate in EDS. Space-filling Latin hypercube designs of

118



www.manaraa.com

experiments were constructed on these input parameters and run through the model.

Noise-Power-Distance data for approach and departure at a few slant distances

were parsed and characterized by their slopes and intercepts from linear regression.

Additionally, each case was evaluated in the AEDT Tester to measure SEL contour

areas in an effort to link the NPD trends with the contour trends.

4.3.2 Half-Normal Probability Plots

While many statistical tests were available, including analysis of variance, student

t-tests, and half-normal probability plots, the latter was chosen for its visual clarity

as well as its inclusion of both factor effects and interaction effects. A half-normal

probability plot is a graphical tool that uses ordered estimate effects based on

least squares estimation to help assess which factors are important and which are

unimportant. A notional example of a half-normal plot is shown in Figure 34.

Figure 34: Notional Half-Normal Probability Plot

The horizontal axis represents statistical medians from a half-normal probability
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distribution, while the vertical axis represents the ordered absolute value of

the estimated effects for the main factors and interactions. For each factor,

the distribution of errors from least-squared estimates is compared to a normal

distribution. If the normal distribution is centered near zero, the factor is

unimportant and will appear on an empirical straight line. If the normal distribution

of errors is skewed and centered away from zero, the factor is important and will

appear well off the empirical straight line. The further a point associated with a

factor appears from this empirical straight line, the more dominant its effect. In this

notional example, the interaction effect AB is the most dominant factor, followed by

the BC interaction effect. The A factor has minor significance, while the B, C, and

AC factors are insignificant. The plot is referred to as “half-normal” because the

variables are ordered by the absolute value of the effect-size without consideration

of whether the effect is positive or negative, thus representing the positive half

of a normal distribution. The points are color-coded to distinguish whether the

relationship is positive (i.e. direct relationship) or negative (i.e. inverse relationship).

4.3.3 Summary of Sensitivity Analysis

Many of these half-normal probability plots were generated for the various noise

metrics tracked (NPD slopes, intercepts, contour areas), and the procedure was

repeated for each vehicle class. Trends were mostly consistent between classes,

and thus only a few qualitative tables of these observed trends are included here

as examples. More detail is included in Reference [123].

The primary observation was that only a handful of variables significantly

impacted noise, and these impacts tended to be consistent across different slant

distances. These variables tended to have combined effects on the NPD linear

regressions such that an increase in slope would be combined with a decrease in the
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intercept, or vice versa. The impacts on the NPDs are thus characterized as “steep”

or “flat” with respect to an increase in a design variable, as demonstrated for the

Large Single Aisle EDS model in Table 14.

Table 14: NPD Sensitivities for Large Single Aisle EDS Model

A steeper NPD implies that the noise levels are more sensitive to thrust setting. It

should be noted that the airframe design variables like flap-ratio and wing-area lead

to more flat NPDs, particularly for approach. This does not mean that the variable

has a less significant impact on noise, but rather implies that the noise level is less

dependent on thrust levels. By comparing the sensitivity analysis for the NPDs with

the equivalent sensitivity analysis on contour areas for various SEL decibel values, a

general relationship can be inferred. Steeper departure NPDs lead to larger contour

areas, whereas more flat NPDs lead to smaller contour areas. The opposite is true

for approach, where steeper NPDs lead to smaller contour areas, whereas more flat

NPDs lead to larger contour areas. This is notionally demonstrated below Table 15.

Engine noise dominates airframe noise during departure because the engines are

operating at highest performance levels during takeoff. Increasing fan-pressure-ratio

(FPR) leads to higher turbulence levels, which increases broadband fan noise. This
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Table 15: SEL Contour Sensitivities for Large Single Aisle EDS Model

variable also contributes to higher jet noise by driving the fan-nozzle jet velocity

higher. Therefore, an increase in FPR leads to steeper NPDs and increased

contour areas. Mass-flow ratio of the top-of-climb to the aerodynamic design point

(TOC Wratio) is inversely proportional to bypass ratio, which is not a design variable

in the EDS environment but rather a response that comes from the iterations of the

engine multi-point design loop. Higher bypass ratios often drive larger fan diameters

which leads to more fan noise, but this is countered by a reduction in jet noise from an

increased buffer between the higher-velocity core flow and the ambient air, as well as

improved mixing with the cooler fan-nozzle flow. Higher bypass ratios also can reduce

the required jet-velocity to achieve a certain level of thrust, as the fan-nozzle increases

the overall thrust by increasing its exiting mass-flow. Since jet noise tends to have a

bigger impact than fan noise, the net effect of increased bypass ratio is typically lower

overall noise. Therefore, increases in TOC Wratio drive smaller bypass ratios, leading

to steeper NPDs and larger noise contours. Extraction ratio (Ext Ratio) is directly

proportional to bypass ratio, so increases in this design variable drive larger bypass

ratios, leading to more flat NPDs and smaller noise contours. Chevron geometries
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(PER1) are designed specifically to reduce noise, and increasing PER1 leads to

more flat NPDs and smaller noise contours. The chevrons increase mixing between

the core-nozzle stream and the fan-nozzle stream, which decreases low-frequency noise

sources, but may result in significant high-frequency noise generation.

For approach, it was observed that flap ratios (FLAPR) and wing areas (SW )

both contribute to more flat NPDs, which results in larger contour areas and thus

louder approach noise. During approach the flaps and other high-lift devices are

deployed in order to increase lift and decrease stall velocity, and the high deflection

angle of these flaps introduces a significant amount of drag. Aerodynamic noise

is closely associated with drag creation mechanisms because of the introduction of

turbulent flow, which contributes to broadband noise. Additionally, vortices created

by the flap-edge can introduce significant low-frequency noise. Similarly, increasing

the wing area increases the areas of the deflected flaps, as flap ratio is defined

with respect to the given wing area. The increase in wing area also leads to some

confounding because of the impact on the duration of the entire approach procedure,

keeping in mind that SEL is an integration of the entire noise event. Engine variable

impacts are not dominant during approach because the engines are operating at

near idle conditions. This is especially true for the Constant Descent Angle (CDA)

approach procedures assumed in EDS, as no powered pull-up maneuvers are executed

(which would generate additional engine noise). Still, these engine design variables,

such as FPR and TOC Wratio, do show some significance for approach. This

significance can likely be explained by the fan operating at off-design conditions,

which can result in noise characterized by multiple tonal components.

The inclusion of these few significant variables for the noise analysis with

Becker’s list of important variables for fuel burn and NOx emissions makes for

a more manageable list of input parameters. A reduced set of input parameters

allows for construction of higher resolution space-filling designs of experiments.
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Better resolution for these design of experiments allow the neural network-based

surrogate models to capture more detail, which helps to increase the power of the

surrogate-based optimization techniques.

4.4 Optimization and Selection of Generic Vehicles

With the aircraft classified into classes and the vehicle-level models reduced to

a manageable subset of input parameters, the generic vehicle method described

in Chapter 3 can be implemented. The combination of airport-level targets,

surrogate-based optimization, perturbed design space exploration on the vehicle-level

design tool, and inverse multi-criteria decision-making techniques form what shall

heretofore be referred to as the method for Generating Emissions and Noise,

Evaluating Residuals, and using Inverse methods for Choosing the best Alternatives,

or the GENERICA method. This method is diagrammed in Figure 35.
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Figure 35: GENERICA Method
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The test structure from Table 10 in Chapter 3 was executed sequentially. Targets

for each airport were generated from the baseline schedules using the actual aircraft

according to each test specification. The generic vehicle alternatives were assigned

similar schedules, and the relative errors for each metric at each airport were

quantified. These distribution of errors were used in conjunction with Stochastic

Multicriteria Acceptability Analysis to provide information about the fitness of each

alternative and choose which alternatives to carry forward to the next test.

4.4.1 Isolated Class Tests

As discussed in Chapter 3, Test A was formulated such that the EDS vehicles are

characterized by a single value per metric. The performance of each potential EDS

generic vehicle was aggregated in a manner consistent with the Test A specifications

and relative errors were calculated at each airport, resulting in error distributions

for each metric. This is notionally diagrammed in Figure 36.

Figure 36: Diagram of Test A Structure

The choice of 2,000 flights ensured observable differences in the DNL contours.

This volume of operations is consistent with some of the busiest airports in the
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subset. The percentages of flights by each target vehicle were multiplied by the

total number of flights (2,000 flights with 1,000 approaches and 1,000 departures) to

determine the number of operations by each vehicle at each airport. In this manner,

the target metrics were actually weighted by the frequency of operations for each

constituent vehicle. Each vehicle was assumed to fly the same representative mission,

with this mission determined using the most common stage-length operation per

vehicle class in the representative schedule, as listed in Table 16. The seat classes

featured a similar breakout of most common stage-lengths per class.

Table 16: Most Common Stage-Lengths per Class

Vehicle Class
Most Common
Stage Length

Representative
Mission [nmi]

SRJ 1 350
LRJ 1 350
SSA 1 350
LSA 1 350
STA 4 2200
LTA 6 4200
VLA 7 5200

The target airport fuel burn and NOx metrics were computed by multiplying the

vehicle-level performance of each constituent vehicle by the total number of operations

at the airport. The target airport DNL contour areas, lengths, and widths (for DNL

55-dB and DNL 65-dB) were computed using ANGIM. The combination of the fuel

burn, NOx emissions, and DNL contour targets establish benchmarks that the generic

vehicle model must be able to match.

To make certain that the generic vehicle models would be realistic representations

of the constituent vehicles in each class, the design space exploration in EDS needed to

be constrained to the feasible space. For the aircraft geometry, these constraints were

simple to enforce by bounding the input parameter ranges. Ranges were derived based

on subject matter expert feedback. Latin hypercube designs of experiments were
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employed on the design space, and neural-net-based surrogate models corresponding

to each metric were fit to enable surrogate-based optimization for the best generic

vehicle models. Simple feed-forward neural-network architectures with between 5 and

10 hidden nodes were sufficient for each metric.

The engine designs were more complicated to constrain due to the iterative

nature of the thermodynamic cycle design and engine-sizing tools within the EDS

architecture (see Figure 28). Therefore the sea-level static (SLS) uninstalled thrust,

overall pressure ratio (OPR), and the bypass ratio (BPR) were each outputs from

EDS. These engine metrics were also modeled with feed-forward neural networks

such that they could be used in conjunction with the surrogates for the environmental

impact metrics.

The neural network surrogate models for each metric were imported into JMPTM,

which enabled the prediction-profiler environment. A subset of this prediction profiler

environment for the LSA generic vehicle design space exploration is displayed in

Figure 37. This environment allows for dynamic exploration of the design space

with views of the partial derivative traces for each metric with respect to each input

parameter. Figure 37 only shows a subset of the metrics (on the y-axis) and the input

parameters (on the x-axis) for the sake of visual clarity. Within the prediction-profiler

environment, the desirability functions were defined to give each design a utility score

with respect to each metric. The desirabilities for the environmental impact metrics

were designed with a nominal-is-best formulation, such that the maximum desirability

of a metric corresponds to the mean of the target distributions of the 94 airports for

that vehicle or seat class. Initially, the bounds for these desirability curves were set

to match the standard deviations of the target distributions as suggested in Figure

25, but some of the bounds had to be relaxed due to existing bias between the actual

vehicles and the EDS models. The overall desirability of an alternative is computed as

the geometric mean of the desirability score with respect to each metric, as previously
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Figure 37: Prediction Profiler for LSA Generic Vehicle

described in Equation (23). The bottom row in Figure 37 shows the partial derivative

traces for the overall desirability with respect to each design variable.

To bound the generic vehicle engine design, the ranges shown in Tables 12 and

13 were incorporated with additional desirability functions, effectively bringing the

constraints into the objective function. Any EDS vehicle design with an engine falling

outside of these ranges was deemed an inferior solution regardless of its performance

with respect to the target metrics. Engine designs within these ranges received a

desirability score of one for each engine metric, whereas engine designs outside of these

bounds received a desirability of zero. This is demonstrated in Figure 37 for BPR.

The desirability function for the first row corresponds to the minimum constraint

on BPR, whereas the desirability function for the second row corresponds to the

maximum constraint, although each maps to the same surrogate model.
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The prediction-profiler environment allowed for rapid exploration of the design

space through Monte Carlo simulations. Uniform distributions were used for each

design variable, although the ranges of the uniform distribution were varied to

isolate different portions of the design space. The results of the Monte Carlo

samplings were aggregated in the far right column of Figure 37, including the

overall desirability scores in the bottom-right cell. In this way, the subset of best

generic vehicle models (with the highest overall desirability) were identified from

thousands of sample points throughout the design space. While it was anticipated

that the best generic vehicle designs within a class would each feature approximately

the same input parameter settings, the results of the Monte Carlo simulations

yielded highly feasible designs from various different points in the design space.

Each of these best designs, however, tended to occur in specific locations of the

engine metric space with respect to SLS uninstalled thrust, OPR, and BPR. This

is demonstrated for the Large Single Aisle class via the scatterplot matrix in Figure 38.

25
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25500 30000 34500
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Thrust [lbf]

25 31 37

OPR

OPR

BPR

=
Top 10

GV Designs

Figure 38: Scatterplot Matrix of LSA GV Engine Metric Space

This indicates the importance of the thermodynamic cycle and the engine sizing

130



www.manaraa.com

in selecting a generic vehicle model and further validates the engine constraints

required for the prediction-profiler environment. These designs were then validated

by setting the design variables in EDS and generating the actual performance metrics

to confirm the surrogate model results. After confirming the results for each vehicle

class (as well as each seat class), it was assumed that other feasible generic vehicle

models existed within close proximity of these best alternatives. Thus, to perform a

focused design space exploration, the input parameters were perturbed around these

best settings. For each of the top five alternatives per class from the Monte Carlo

simulations, a 50-case Latin hypercube design of experiments was constructed with

the input parameter ranges bound by ±1% deviation around these best alternatives

with respect to the original input parameter ranges. This design space perturbation

is demonstrated notionally in Figure 39 for a subset of the input parameters for the

LTA vehicle class.
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Figure 39: Scatterplot Matrix of LTA Design Space Perturbation
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The performance of these designs were then evaluated for the best generic vehicle

designs with respect to both Test A and Test B targets using SMAA to calculate

descriptive measures for each alternative. Test B added the complexity of trip length

variations for each aircraft at each airport. A Matlab-based ANGIM wrapper was

designed to run each EDS generic vehicle alternative across the subset of airports

using a matching stage-length distribution for each airport as notionally diagrammed

in Figure 40.

Figure 40: Diagram of Test B Structure

For each class, marginally better generic vehicle alternatives were identified

from the focused perturbation design of experiments, but all of the alternatives

featured similar accuracy and each were assigned comparable rank-1 acceptability

scores. Each alternative also featured central weight vectors that were approximately

uniform across the different criteria, suggesting that all of the alternatives featured

balanced accuracy for all of the metrics. Examples of these relative error distributions
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for total fuel burn and terminal area departure are shown in Figure 41. The total

mission fuel burn distribution features very small relative error for most of the

airports, whereas the terminal area departure fuel burn distribution is multimodal.

The shapes of each are characteristic of the different scales for each metric.
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Figure 41: Tests A and B Error Distributions: Fuel Burn

Recall that Test A decouples the variance and the mean of the error distributions

such that every generic vehicle alternative has identical variance. As a result, every

alternative features an identically shaped distribution, but the distribution is shifted

depending on the accuracy of the generic vehicle relative to the mean of the target

distribution. The optimization routine attempts to center each metric distribution

around zero simultaneously. The Test B formulation adds unique stage length

distributions at each airport. This increases the variance of the target distribution,

and the generic vehicles adhere to the same trip-length distributions. As a result

the error distributions may be differently shaped between different alternatives. A

comparison of the Test A and Test B distributions in Figure 41 show that the error

distributions are nearly identical, however, and that unique mission lengths did not

greatly increase the variance. Similar trends were observed for the NOx emissions.

This suggested that the representative mission length was an effective way to reduce
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the complexity of the generic vehicle optimization problem.

The error distributions for the noise contour areas were also multimodal and

featured much wider variance, as shown in Figure 42. Contour area was measured

in square nautical miles, which is a much smaller scale than the mass metrics for

fuel burn and NOx emissions. The distributions are shaped such that there is

approximately a 30% difference between the mean and the mode. If the optimizer

had targeted the mode instead of the mean, the generic vehicles would consistently

over-predict contour areas at most airports.
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Figure 42: Tests A and B Error Distributions: Contour Area

A comparison between Test A and B once again showed little difference in the

shape and variance for the noise contour area error distributions. This was the

first evidence that Hypothesis 3 is supported. The subsequent tests combine all of

the vehicle classes together, which makes the selection of the best generic fleet a

combinatorial problem between the best alternatives in each class. A small subset

of the best alternatives in each class were carried forward for the subsequent mixed

class tests.
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4.4.2 Mixed Class Tests

Tests C-E were each very similar in formulation, as is demonstrated by the notional

diagram in Figure 43. If Hypothesis 3 is correct, Test A identified the best generic

vehicle alternatives per class such that when these vehicles are mixed together

they should accurately predict fleet-level fuel burn, NOx emissions, and DNL noise

contours. Test C was designed to test this assumption by generating target schedules

that use the actual distributions of all the in-production vehicles and all of their

stage-length operations. Test D was similar, but instead of assuming a fixed number

of operations at each airport, the variability of actual average daily operations at each

airport were introduced. This test also accounted for the ratio of day flights to night

flights (recall that night flights receive a 10-dB penalty). Test E is similar to Test

D, but each airport features a unique infrastructure characterized by the number of

runways and the airport layout. Both the targets and the generic fleet are assumed to

utilize each runway uniformly with cross-flow. The contour length and width netrics

were replaced with the Detour Index and Spin Index, given that each airport contour

features a unique shape.

For the fleet mixture tests, every generic vehicle family performed well with

marginal differences in fleet-level accuracy between each combination. Between Tests

C and D, it was observed that the relative error distributions for the fuel burn and

NOx emissions metrics did not change. These metrics are just linear summations of

vehicle-level metrics multiplied by the number of operations, as was shown in Equation

(16). Thus the target metrics and the generic fleet performance metrics scale together,

leading to these identical relative error distributions. The noise metrics, however,

do not scale linearly, and thus the error distributions change between these tests.

For Test D, the actual volume of operations at some of the airports are relatively

small compared to the default of 2,000 operations used for Test C. This can lead

to misleading results when considering relative error, as small differences in the
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Figure 43: Diagram of Tests C-E Structure

measurements are magnified as large relative errors.

For Test E, the fuel burn and NOx emissions were identical in formulation to

Test D, since these metrics did not depend on the configuration of the airport. The

noise metrics were difficult to compare to previous tests due to the introduction of

unique shapes and the use of the shape metrics from Figure 16. In order to compare

the effectiveness of the best average generic vehicles (as determined by the SMAA

analysis) against the traditional approach of using representative vehicles, relative

error distributions for each method are shown side-by-side in Figures 44, 45, and 46

for fuel burn, NOx emissions, and noise, respectively. It should be noted that the

errors for the Detour index and Spin index in Figure 46 are presented as absolute

error rather than relative error, as these metrics are already scaled between 0 and 1

by normalizing with respect to an equal area circle.

As can be seen in Figure 44, the average generic vehicles for both the vehicle-class
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Figure 44: Test E Error Distributions – Fuel Burn
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Figure 45: Test E Error Distributions – NOx Emissions
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Figure 46: Test E Error Distributions – DNL 65-dB Contours

and seat-class groupings feature a lower mean error and reduced standard deviations

with respect to target total mission and terminal area departure fuel burn compared
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to the traditional representative seat-class vehicles. While Figure 45 shows that the

representative vehicles have a lower mean error than the generic vehicles for total

mission and terminal area departure NOx, the generic vehicles still feature quality

average error and with less variance across the 94 airports.

For the terminal area approach metrics, the representative vehicles are consistently

more accurate than the average generic vehicles. The approach metrics were omitted

from the SMAA analysis due to the bias introduced by the default Continuous Descent

Approach (CDA) procedures performed by all EDS vehicles (see the discussion at

the end of Appendix A). The targets generated from the actual vehicles include

many aircraft that fly dive-and-drive approaches with pull-up maneuvers at a 3,000-ft

altitude, and as a result the average generic vehicles consistently under-predict

approach fuel burn and NOx emissions. Because the representative vehicles are simply

a subset of the actual vehicles, many of them include these dive-and-drive procedures,

and as a result the representative vehicle method does much better at capturing these

terminal area approach metrics. However, CDA is gaining momentum and is expected

to be more wide-spread in the future. Given the fact that this thesis is addressing

future fleet and technology scenarios, it is anticipated that CDA will be broadly

implemented and this assumption is reasonable.

At first glance, the representative vehicles seem to demonstrate more robustness

than the average generic vehicles with respect to the noise targets across the subset

of airports, as evidenced from lower average error and standard deviations for the

contour-area and shape-metric distributions in Figure 46. A closer inspection of the

results revealed that the outliers at the tails of the average generic vehicle error

distributions corresponded to airports where the operations were dominated by only

one constituent vehicle within a class, which typically occurs at airports with a low

volume of operations. The noise contours at these airports were very small, which

magnified the relative error. For airports with more operations spread across a variety
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Figure 47: Sample DNL Contour Comparison

of aircraft, such as that shown in Figure 47, the generic vehicles proved to be very

accurate. The only observable differences in the contours occur at the closure points

of each contour lobe. These lobes are more sensitive to the approach operations,

and thus the differences are attributable to the aforementioned bias introduced by

differing approach procedures.

For the representative vehicles, the opposite trend was observed with larger errors

at airports with more operations and a greater variety of aircraft. The representative

vehicles perform well at small airports with less variety of aircraft, particularly if the

few aircraft operating at that airport are actually contained within the representative

set of vehicles. The relative error can sometimes be misleading because it is
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Table 17: Relative Error of Cumulative Metrics across 94 Airports

Cumulative Metrics
Average Generic
Vehicle Classes

Average
Generic Seat

Classes

Rep. Seat
Classes

Total Fuel Burn -1.87% -3.57% -9.91%
Departure Fuel Burn 0.19% 0.95% -10.46%
Total NOx Emissions 2.25% -3.27% -12.19%
Departure NOx Emissions -3.89% -2.05% -9.89%
DNL 65-dB Contour Areas 6.77% 8.28% 11.91%
DNL 55-dB Contour Areas 4.77% 5.95% 12.91%

normalized by the magnitude of the target metric. Thus, minor errors at smaller

airports may be magnified as larger relative error. The relative error of the cumulative

sums for each metric across the 94 airports provided another point of reference for the

performance of the generic vehicles and representative vehicles. The relative errors

of these sums are displayed in Table 17. These aggregate errors demonstrate the

superior performance of the generic vehicles relative to the representative vehicles,

particularly with respect to noise. This analysis is further supported by examining

the cumulative results at a smaller subset of 34 airports with significant volume of

operations, which is listed in Table 18. As can be seen, the relative error of the

representative vehicles increases for most metrics, which is to be expected given the

tendency of smaller target metrics to magnify relative errors. On the contrary, the

average generic vehicles actually improved in relative error for most metrics for this

subset of significant airports, particularly the noise contour areas.

The last major observation from the error distributions was that the

vehicle-class-based average generic fleets performed only slightly better across

the 94 airports than the seat-class-based average generic vehicles. This result was

anticipated in Hypothesis 1, but the relative difference between the performance of

these two groupings was less pronounced than expected, suggesting a robustness of

the average generic vehicle methodology for various class-grouping techniques.
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Table 18: Relative Error of Cumulative Metrics for the Top 34 Airports

Cumulative Metrics
Average Generic
Vehicle Classes

Average
Generic Seat

Classes

Rep. Seat
Classes

Total Fuel Burn -1.95% -4.12% -11.03%
Departure Fuel Burn -0.27% -0.04% -11.42%
Total NOx Emissions 1.82% -4.69% -14.10%
Departure NOx Emissions -4.56% -3.55% -11.99%
DNL 65-dB Contour Areas 4.49% 6.22% 14.84%
DNL 55-dB Contour Areas 5.82% 6.31% 14.38%

4.4.3 Variable Operations Test

The final test explored the robustness of the best generic fleet to changing operational

schedules. The volume of operations by each class were independently scaled from

a baseline as shown in Equation (25). The scalars for each class were independently

scaled from random draws on uniform distributions with a minimum of 1 (no increase

in operations by that class) and a maximum of 3 (a threefold increase in operations

by that class). Sixty random scenarios were generated and each scenario was applied

across the 94 airports. This resulted in many different schedules featuring different

volumes of operation and different class distributions.

Ops Total =
∑

i

ki Opsi (25)

Where:

Ops Total = Total operations for scaled scenario

Opsi = Baseline schedule operations for ith vehicle class

ki = Operations scalar multiplier for ith vehicle class
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For this test a new baseline schedule was used, but the performance of the

generic fleet with respect to these new baseline targets did not change much from

the observations in Test E. The biggest degradation occurred in the Total NOx

emissions, where the increase in error is due to the greater frequency of aircraft

with advanced combustor technologies in the baseline fleet compared to the original

baseline schedule. These advanced combustors specifically reduce the NOx emissions

indices for a given engine, but do not have any influence on fuel burn or noise. As

a result, the average generic vehicles over-predict the total NOx emissions, but still

feature good accuracy for fuel burn and noise. This demonstrates the dependency

of the average generic vehicle method on the relative frequency of the constituent

vehicles in each class. The means and standard deviations for the error distributions

across the scaled scenarios, however, were consistent with the baseline scenarios, as

is demonstrated in Figure 48.
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Figure 48: Test F Error Distribution Comparisons

The observations from Test F suggests the GENERICA method demonstrates

robustness to changes in total volume of operations as well as changes to the relative
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frequency of operations by each class.

4.5 Review of Hypothesis Statements

Given the observations from these average generic vehicle tests, the three hypothesis

statements can now be addressed. These hypotheses are repeated in this section for

the convenience of the reader.

Hypothesis 1: A per-class average generic fleet of vehicles defined by

vehicle-class groupings based on similarities in the environmental performance

metrics will feature superior fleet-level accuracy compared to a per-class average

generic fleet of vehicles defined by traditional seat-class groupings.

This hypothesis is weakly supported by the results from Test E. The average

generic vehicle class tends to perform better than the average generic seat class, but

the differences in the error distributions and cumulative error are marginal, and both

formulations outperform the representative seat-class approach. This demonstrates

the robustness of the GENERICA method to any vehicle classification scheme, but

groupings with less performance variability per class should still yield marginally

better fleet-level accuracy. It should be noted that the vehicle-class formulation

achieved slightly better accuracy with fewer groups, which is attributable to the

minimization of in-class variance through discriminant analysis.

Hypothesis 2: A fleet of average generic vehicles will more accurately

approximate the DNL 65-dB noise contours across a subset of airports as compared

to a traditional representative-in-class approach.

This hypothesis is supported based on the results from Test E, particularly as
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demonstrated for the cumulative metric errors listed in Tables 17 and 18. The results

suggest that the GENERICA method is actually more critical for noise than for the

other metrics, as the generic vehicles were more accurate for busier airports with

larger contours and wider varieties of aircraft operations, whereas the representative

seat-class vehicles lost accuracy with increasing operational volumes and aircraft

variety.

Hypothesis 3: If the operational distributions of each vehicle class across a

subset of airports can be isolated from other operational complexities, the average

generic vehicle that minimizes the mean error for the DNL noise contours across

the subset of airports will also minimize the error at each airport when all of these

operational complexities are reintroduced.

This hypothesis is supported by the observations from Tests A-F. The best generic

vehicle models from Test A continued to perform well as each layer of complexity was

sequentially added with each test. This suggests that only Test A is required for the

GENERICA method. The power of using this simplified test is that each design

can be characterized by single point performance for each metric, whereas Tests

B-F featured multiple performance points for the generic vehicles (one per airport

for each metric). This enables the use of surrogate-based optimization techniques.

Monte Carlo simulations can be used to rapidly and repeatedly sample these surrogate

models thousands of time, and desirability scores allow for quick filtering of results

to isolate the best average vehicle design. Thus, if the GENERICA method were

to be repeated for an updated baseline year, the surrogate model approach would

be sufficient. Assuming the vehicle-level modeling tool remains static, the same

surrogates can be used and only the desirability functions need to be modified to

reflect the change in the baseline targets.
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4.6 Implementation of Population Grid Method

The generic vehicles demonstrate accuracy for contour area and shape across

the subset of airports, but without measuring the population exposure counts

it is difficult to determine how sensitive the true metric is to error introduced

by these reduced fidelity models. This required incorporating population data

conforming to the grid dimensions in ANGIM. An airport with significant population

exposure was selected as a sample problem to compare various population methods,

with the previously described Thiessen polygon method proving to be the most

appropriate. Population grids were collected for all of the airports in the subset, and

the population counts between the actual aircraft and the generic fleet were compared.

4.6.1 Comparison of Population Methods

The goal of the population method was to best approximate the area-weighted

approach that typically requires importing contours into ArcGIS R© and performing

overlay functions on the Census block polygons. Contours for a large hub airport with

multiple parallel runways were generated in ANGIM from a 2010 baseline schedule

and geospatially referenced to the Latitude and Longitude of one airport runway. The

contours were converted to shapefiles and imported into ArcGIS R©, and the overlay

and area ratio calculations were executed on the 2010 Census block polygons to get

targets for the rapid population methods to match. The centroid method was also

executed as a point of reference and proved to be the least accurate approach. Four

grid-based methods were attempted and compared, with the results shown in Table

19.

The first three methods were each raster-based methods, while the fourth method

was the Thiessen polygon grids previously described in Chapter 3. A raster is a

regular array of cells, or pixels, containing numeric values [124]. They are commonly
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Table 19: Population Method Comparison at Large Hub Airport

Population Method Population Exposed (% Error)
DNL 65-dB DNL 55-dB

ArcGIS R© Overlay 10657 (-) 78714 (-)
Centroid Method 11366 (6.65%) 77369 (-1.71%)

1X Resolution Raster 9977 (-6.38%) 73578 (-6.52%)
15X Resolution Raster 10845 (1.76%) 78582 (-0.17%)

Pycnophylactic Interpolation 10871 (2.01%) 78286 (-0.54%)
Thiessen Polygon Grid 10842 (1.74%) 78576 (-0.18%)

used to represent map data or imagery, but can be used for quantitative data as well.

The rasters worked similarly to the Thiessen polygon approach, but at the same

resolution the rasters sometimes skipped over very small census blocks and total

population counts were not conserved. Increasing the resolution of the raster by a

factor of 15 (0.0053-nmi resolution) enabled conservation of total population counts,

but at much greater computational expense. Additionally, the high-resolution raster

was coupled with a pycnophylactic interpolation technique for smoother spatial

gradations, but even after 50 iterations of the smoothing function the population

results did not change much, suggesting the grid-resolution was fine enough. The

Thiessen polygon grid method matched the 15X resolution raster grid results with

much less computational expense, and thus it was selected as the most appropriate

method for mapping 2010 Census block data into ANGIM.

4.6.2 Pairing Generic Vehicles with Population Grid Method

The Thiessen polygon method for exporting area-weighted population grids was

executed in ArcGIS R© for each of the 94 airports within the ANGIM subset, and the

resulting population grids became a library of inputs within the ANGIM framework

to be called at the end of noise grid calculations. To demonstrate the utility of the

generic vehicles, the Thiessen polygons were used in ANGIM with the actual fleet,
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the generic vehicle classes, and the representative-in-class aircraft. The cumulative

results across the subset of airports are shown in Table 20.

Table 20: Fleet-Level Comparisons across Subset of Airports

Metrics
Actual
Fleet

Generic Vehicles
(% Error)

Representative
(% Error)

DNL 65-dB Contour Area 180.63 183.90 (1.81%) 204.49 (13.21%)
DNL 65-dB Pop Exposure 254352 250146 (-1.65%) 318037 (25.04%)

DNL 55-dB Contour Area 1183.38 1168.82 (-1.23%) 1377.62 (16.41%)
DNL 55-dB Pop Exposure 4551725 4395746 (-3.43%) 5421435 (19.11%)

The contour accuracy for each of the surrogate fleet approaches is reflected in the

accuracy for the population counts relative to the actual fleet. The generic vehicles

are very accurate relative to the actual fleet, but the representative-in-class feature

significant error due to inaccuracy at larger airports with greater population densities

in the surrounding communities. To quantify the contour areas and population

counts for all 94 airports using the actual fleet, execution time in ANGIM exceeded

80 minutes. The same analysis using the six generic vehicles took only two minutes.

While inclusion of more technology vehicle grids will increase ANGIM’s execution

time, reducing the fleet to these generic vehicles introduces significant computational

savings and enables more scenario comparisons.

4.7 Summary of Implementation

Discriminant analysis combined heuristics and statistical classification to assign

aircraft to vehicle classes that minimized the variance within each class. Important

input parameters to the physics-based vehicle-level model were identified through

sensitivity analysis, and designs of experiments were constructed to create surrogate

models for each metric. Surrogate-based optimization using desirability functions
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and Monte Carlo simulations honed in on the best alternatives for each vehicle class

and seat class model, and a subset of these alternatives were carried forward for

the mixed class tests. The generic vehicles achieved better cumulative accuracy

across the airports compared to the traditional representative-in-class approach. The

vehicle-class groupings performed slightly better than the seat-class groupings, but the

accuracy of both approaches demonstrated the robustness of the GENERICA method

to different classification schemes. Pairing these generic vehicles with the Thiessen

polygon grid method for population exposure counts demonstrated good accuracy

compared to the actual fleet at a significantly reduced execution time. Therefore,

the generic vehicle models and the Thiessen polygon grids represent good methods

for exchanging fidelity for increased computational speed. The combination of these

methods form the critical components of the screening-level framework for assessing

aviation’s environmental impacts.
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CHAPTER V

CAPABILITY DEMONSTRATION

Chapter 4 demonstrated the GENERICA method for optimizing generic vehicle

models for use with fleet-level analysis. The generic fleet can now be used as

virtual testbeds for projecting fleet-level impacts of vehicle-level technologies. By

modeling compatibilities, benefits, and penalties of various technology packages at

the subsystem level in a vehicle design tool, bottom-up assessments of projected

technological benefits can be conducted. Fleet-level exploratory forecasting requires

linking the vehicle level benefits to forecasts of operations in the National Airspace

System (NAS). This required some enhancements of the integrated fleet-level

environment diagrammed in Figure 29, which was limited to a baseline year

schedule of operations discretized into the nine mission lengths listed in Table 11.

These enhancements include leveraging existing algorithms for projecting operation

counts at each airport and creating technology introduction scenarios for fleet-level

comparisons. Incorporating these enhancements completes the proposed framework.

A few examples of screening-level capabilities for fleet-level scenario analysis are

demonstrated, including fleet-level comparisons of different replacement schedules

and an assessment of new runway locations under different technology scenarios.

5.1 System-Wide Fleet-Level Environmental Performance
Model

Jimenez et. al extensively reviewed the current state of the art and standard methods

for system-wide/fleet-level environmental performance modeling and assessment in

their work [30]. They propose a system dynamics model that incorporates available
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forecasts from regulatory bodies applied to a reference baseline set of operations

tabulated by frequency for origin-destination (OD) pairs for each aircraft type. The

Fratar algorithm is applied to converge operations at these OD pairs to a balance of

operations (arrivals versus departures), as documented in Ref. [125] and notionally

diagrammed in Figure 49. The model includes a scale factor for operations growth

to allow for variations from the provided forecasts to allow more parametric scenario

analysis.

Figure 49: Forecasts and Fratar Algorithm for Origin-Destination Pairs

Fleet-level evolution is formulated by means of a retirement and replacement

scheme notionally depicted in Figure 50. Retirements model the removal of aircraft

from the operating fleet, whereas replacements capture the introduction of new

aircraft. Age of the current aircraft types are tracked, and empirical survival curves

based on regulatory standards prescribe the percentage of aircraft that remain in
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operation as a function of age [126]. The replacements algorithm implements aircraft

type assignments for operations associated with retirements as well as for operations

comprising activity growth for a given out year. The replacement formulation is

chronological (Out-of-Production, In-Production, and Future), dependent on the

mission capabilities (range and payload/seat capacity) of the new fleet as compared

to the operations that must be allocated, and assumes that new aircraft have

comparable or improved fuel burn relative to the vehicles they replace.

Figure 50: Fleet-Level Evolution via Retirement and Replacement

Once final operational assignments are set, the operational frequencies for each

aircraft at each mission range are linked to regressions for fuel burn versus range, as

formulated in Equation (16). The regressions are derived from standard least-squares

method for each aircraft assuming a quadratic functional form, using operation counts

as frequency weights [127]. In this manner, fuel burn and emissions are calculated over

time depending on the chosen forecast scenario and the specified vehicle introduction

rate. This modeling tool is commonly referred to as the Global and Regional

Environmental Aviation Trade-off (GREAT) tool [30, 128]. GREAT, however, was

only designed for modeling fuel burn and NOx emissions. Noise analysis was not

included in its formulation because of the additional complexities and computational

burdens of calculating noise.
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By using the GREAT formulation to dynamically create the flight schedule input

files required by ANGIM, these two fleet-level modeling tools can link system-wide

performance with respect to each of the relevant metrics. The logic for linking these

tools is diagrammed in Figure 51. GREAT contains a comprehensive list of airports

to capture the OD pair dynamic across the entire NAS, but the noise analysis is

only focused on the previously defined subset of airports with community exposure

to significant noise. Furthermore, GREAT models operations annually, but the

computation run-times of even a rapid noise tool like ANGIM prohibit yearly noise

calculations. Instead, the noise analysis filters only the operations at the subset of

airports for every tenth year (2010, 2020, 2030, 2040, and 2050).1 Operations by each

vehicle type at each airport are tabulated, and percentages of replacement operations

at each airport are also tracked.2 The baseline schedule of operations are then scaled

to match the total operations and percentages per vehicle. These scaled operations

are mapped to flight schedule input files for ANGIM, which are then paired with

the runway configurations at each airport and executed to generate DNL grids and

define DNL contours. In this manner, the changes in these contours can be observed

as a function of the GREAT fleet-evolution scenario enabling comparisons between

metrics subjected to common operational assumptions.

1The resolution of noise analysis could be refined to every five years, but as always improved
resolution requires a tradeoff in run-times.

2Currently the method includes only the baseline average generic vehicles and future technology
vehicles. Out-of-production noise grids are not included, although the total volume of operations in
the base year are conserved and allocated to the baseline average generic vehicles. This means
that the noise analysis may under-predict contour sizes in early years, but the results become
more representative in future years as out-of-production aircraft are retired. The method could
be enhanced in the future to include noise grids for the out-of-production aircraft, but once again
at cost of computation run-time.
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Figure 51: Linking GREAT and ANGIM
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5.2 Technology Infusion on Average Generic Vehicles

The average generic vehicles were designed to be used as virtual testbeds. By

designing these vehicles in EDS, technology infusion can be modeled at the subsystem

level to capture system level benefits or penalties and capture trade-offs between

different environmental performance metrics. A library of many different technology

models have been developed at Georgia Tech under the CLEEN and ERA programs.

These technologies map to changes in the input design variables with respect to the

baseline average generic vehicles through a k-factor approach, implemented through

a Technology Impact Matrix (TIM) [129]. Technologies considered fall into one of

seven categories:

1. 2010 Baseline Technologies

2. Airframe Lightweight Structural and Sub-System Technologies

3. Airframe Aerodynamic Technologies

4. Airframe Noise Technologies

5. Engine Fuel Burn Technologies

6. Engine Noise Technologies

7. Engine Emission Technologies

The amount of change for each input design variable depends on the specific

technologies considered, compatibilities between technologies, and interdependencies

of simultaneously infused technologies that may mitigate benefits relative to each

technology in isolation. In practice many different technology packages may be infused

for exploring many different technology scenarios, but for simple demonstration of

how these new technology vehicles are used in a fleet-level tool, only two scenarios

shall be defined. A Moderate (MOD) investment in technology and an Accelerated
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(ACC) technology scenario were defined, with each scenario featuring an N+1 and

an N+2 generation. The MOD scenario focuses on polymer matrix composite

technologies on the engine and advanced engine liners for noise reduction in the

N+1 time frame. In the N+2 time frame, the MOD scenario adds to the previous

technologies with advances in materials for engine components with advanced powder

metallurgy and high temperature erosion/thermal barrier coatings. Damage arresting

stitched composites lead to reductions in aircraft structural weight, and other airframe

improvements lead to improvement in aerodynamics and a reduction in airframe noise

from flaps and landing gear. For the ACC scenario, the N+1 vehicles match the MOD

N+2 vehicles, with an optimistic assumption that these technologies advance in TRL

faster and are incorporated into the manufacturing process earlier. This allows for

additional advancements in the N+2 timeframe, including active flow and clearance

control for compressors and turbines, improved airframe aerodynamics through hybrid

laminar flow control (HLFC), and reduced structural weight from advanced composite

fabrication and structure joining methodologies. The only additional noise technology

for the N+2 vehicles are acoustic lines for slat inner surfaces.

The same technology scenarios were applied to each of the baseline generic vehicle

models. The resulting changes in the engine specifications and aircraft thrust and

weight for each class subject to each technology scenario are listed in Tables 21

and 22. It should be noted that no engine emission technologies were considered

for these scenarios. While the CLEEN and ERA project have modeled several

advanced combustor technologies that significantly reduce NOx emissions, most of

these technology models were deemed proprietary and thus could not be used in this

analysis. As a result, all savings in NOx emissions are due strictly to corresponding

reductions in fuel burn, and at times these emissions even increase due to the fact

that many of the engine technologies enable higher overall pressure ratio (OPR) for

higher fuel efficiency while mitigating increases in engine weight as listed in Table
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21. For this reason, the results presented from this point forward will only focus on

fuel burn and noise, with explorations of NOx emissions reserved for future work.

Table 21: Engine Specifications for Technology Scenarios

OPR BPR

Vehicle
Class

GV
MOD
N+1

MOD
N+21

ACC
N+2

GV
MOD
N+1

MOD
N+21

ACC
N+2

RJ 23.08 23.11 23.11 23.10 5.10 5.23 5.24 5.25
SSA 27.38 43.622 47.07 54.78 5.59 8.80 10.85 12.30
LSA 28.25 40.13 43.25 50.35 5.95 9.02 11.01 12.41
STA 33.76 41.10 48.20 61.60 5.15 11.36 12.95 13.49
LTA 36.85 40.81 46.77 59.83 8.41 11.48 13.06 13.76
VLA2 29.03 32.70 39.39 50.12 5.14 14.09 16.25 17.31

1 ACC N+1 aircraft is the same as MOD N+2 aircraft
2 VLA has 4 engines, all other vehicles have 2 engines

Table 22: Aircraft Static Thrust and MTOW for Technology Scenarios

Static Thrust [lbf] Maximum Takeoff Weight [lb]

Vehicle
Class

GV
MOD
N+1

MOD
N+21

ACC
N+2

GV
MOD
N+1

MOD
N+21

ACC
N+2

RJ 14362 13624 13758 14024 84343 68495 69182 70549
SSA 22970 21543 20110 18803 151557 142208 132803 124272
LSA 30634 28651 26626 25087 200057 186624 174369 164975
STA 57090 46883 43925 40279 386710 316278 295892 272560
LTA 100972 80884 74376 67468 675272 539375 496442 450977
VLA2 54361 48917 44887 40951 852452 768888 702731 641346

1 ACC N+1 aircraft is the same as MOD N+2 aircraft
2 VLA has 4 engines, all other vehicles have 2 engines

Table 21 also shows that the technologies drive the engines towards higher bypass

ratios. Historically, this is the best way to reduce engine jet noise, and thus it is

anticipated that these high BPR engines should significantly reduce the aircraft noise

signature. Table 22 demonstrates how the technologies generally reduce the maximum

takeoff weight (MTOW) and the static thrust. The reduction in thrust required is
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related to the weight savings, which should lead to significant fuel savings. The weight

and thrust reductions have competing effects with respect to noise. The reduction in

takeoff thrust required should reduce the noise signature of the aircraft, but reducing

thrust may also impact the climb performance with shallower trajectories leading to

extended contour lengths.

The resulting fuel burn savings corresponding to each scenario are displayed in

Figures 52 and 53, with results broken up into narrow-body (RJ, SSA, LSA) and

wide-body (STA, LTA, VLA) aircraft for visual clarity. As can be seen, the fuel

savings increase with longer mission ranges, and the savings are much greater for the

wide-body aircraft. The fuel savings increase with each technology advancement for

all aircraft except the RJ vehicles, which actually feature marginal degradation in

fuel savings with technology advancement. The OPR and BPR for the RJ vehicles

do not change much between technology scenarios, and while the RJ MOD N+1

does feature some thrust and weight savings, the successive technology generations

actually lead to increases in both thrust and weight.
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Figure 52: Fuel Savings for Narrow-Body Aircraft
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Figure 53: Fuel Savings for Wide-Body Aircraft

The noise technologies lead to significant reductions relative to the baseline

average generic vehicles, but the relative differences between each technology vehicle

are minor. A sample of the SEL 80-dB approach and departure contours for the

LSA vehicle are shown in Figures 54 and 55, respectively. The departure contours

correspond to a representative stage-length 1 mission. The MOD N+1 technology

infusion significantly reduces the noise signature due primarily to a 50% increase in

BPR. The more advanced technology portfolios, however, focus more on structural

weight reductions which results in only incremental improvements in the noise

signature. The ACC N+2 vehicle actually features a slightly longer contour, which is

a consequence of the reduced engine thrust and the terminal area trajectories. Similar

trends were observed for the other vehicle classes, with the level of improvement

varying with size. The LTA and VLA aircraft feature greater reduction in the noise

signature. The RJ aircraft already had a small noise signature, and the BPR does

not change much with technology integration and thus the reduction in the noise

footprint is less pronounced. It should be noted that while the RJ noise contours are

small, this vehicle significantly contributes to DNL noise contours at many airports
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due to the frequency of operations [130].
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Figure 55: Noise Contour Reductions for LSA: Departure

While the vehicle-level results from technology infusion demonstrate greatly

improved performance, the true impact of this technology infusion depends on

the relative frequency of operations by each vehicle type. To reduce fleet-level

environmental impacts, these new technology vehicles must be introduced to the

fleet, and thus fleet-level performance will also depend on the replacement schedules

for each vehicle type.
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5.3 Fleet-Level Scenario Analysis

After including the link between GREAT and ANGIM, the technology infused

generic vehicles, and the population grid method introduced in the previous

chapter, the final enhanced integrated environmental design tool can be used for

fleet-level analysis. This enhanced environment is diagrammed in Figure 56. This

enhanced environment is referred to as the GREAT-A method, as it links the

previously developed capabilities of GREAT and ANGIM to common and consistent

operational schedules.

Figure 56: Enhanced Fleet-Level Environment with Specific Tools

5.3.1 Technology Vehicle Replacement Schedules

With these enhancements, various market introduction scenarios can be explored

to simultaneously visualize resulting impacts on fuel burn, NOx emissions, and

significant noise exposure. These impacts will vary depending on the forecast used,

but the scenarios analyzed in this chapter use the FAA’s Terminal Area Forecast

(TAF) as a baseline [131]. GREAT includes a capability to parametrically scale a
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given forecast to explore different scenarios, but for the purposes of demonstrating

the capability no scalings were applied. The forecast of operations by each class

are shown in Figures 57 and 58. As can be seen from the scales on each plot, total

operations by aircraft in the narrow-body classes (RJ, SSA, LSA) is an order of

magnitude greater than total operations by aircraft in the wide-body classes (STA,

LTA, VLA). The operations by the existing fleet are represented by the solid lines,

while replacement operations are represented by dashed lines. The TAF forecasts

a significant increase in demand for RJ, SSA, and STA replacements compared to

current day operations by existing aircraft, whereas demand for LSA, LTA, and VLA

replacements increase more steadily. It should be noted that GREAT uses an earlier

baseline year, which explains why the replacement operations are not zero in 2015.
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Figure 57: Forecast of Operations for Narrow-Body Aircraft

Aircraft manufacturers typically have limited resources to carry out research and

development for multiple programs simultaneously, and thus they must prioritize

certain aircraft types depending on customer demand for replacements [89]. As a

sample problem, the market introduction schedules from Ref. [89] were used. The
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Figure 58: Forecast of Operations for Wide-Body Aircraft

introduction rates for each vehicle class are shown in Figure 59. Note that “SA”

refers to the Single Aisle classes (SSA and LSA). Since the vehicles in the LSA class

are essentially stretched versions of those in the SSA class, it is assumed that they

will share similar future designs which should allow them to be developed in parallel.

Figure 59: Baseline Technology Vehicle Replacement Schedule

Until the first introduction of N+1 technology vehicles in 2016, all replacement

operations due to the combination of retirements and growth are assigned to the

baseline average generic vehicles that represent current in-production vehicles. Each

N+1 technology vehicle is phased in gradually over four years. In the first year, 25%

of replacement vehicles are N+1 technology vehicles, while the other 75% are still
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average generic vehicles. The following year the replacements are split 50%-50%, and

so forth until after four years 100% of replacement operations are allocated to N+1

technology vehicles.

Further in the future, the N+2 vehicles are also phased in over four years while the

N+1 vehicles are phased out. This does not mean the N+1 vehicles are retired, but

rather that all replacement operations are eventually allocated to the N+2 vehicles.

This phase-in structure is common for each vehicle class, but the introduction

dates are staggered due to the limitations on R&D investment in parallel vehicle

development programs. This schedule was derived from a market study described in

Ref. [132].

The baseline replacement schedules were applied to both the MOD and ACC

technology scenarios. Since they each use the same market introduction schedule it

is difficult to glean any information about the sensitivity of results to the technology

introduction rates. In order to demonstrate how critical the vehicle introduction dates

are to the projected results, a simple deviation from the baseline market introduction

schedule was formulated and run through the integrated environment for comparison.

The same technology scenarios were considered, but a new market scenario was

created such that the Very Large Aircraft (VLA) technology aircraft are introduced

earlier and the Small Single Aisle (SSA) and Large Single Aisle (LSA) programs are

delayed. This notional scenario, shown in Figure 60, represents a future where airlines

demand advancements in the larger aircraft due to the cumulative fuel savings over

large range missions.

In this notional scenario, the aircraft manufacturers prioritize the VLA program

at the expense of delays in the SSA and LSA programs. This particular scenario was

chosen to exploit previous observations of the area and spatial contributions of the

SSA and LSA classes to DNL contours at these airports [130, 133]. The VLA, by

comparison, contributes very little to the DNL contours despite having the largest
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Figure 60: Alternate Technology Vehicle Replacement Schedule

vehicle-level noise footprint because of the relative infrequency of flights compared

to other vehicle classes.

5.3.2 Fleet-Level Results

The first analysis isolated the impacts of each technology scenario with respect

to a common baseline replacement schedule. Results were compared against a

Business-as-Usual (BAU) scenario where all future replacements are allocated to the

baseline average generic vehicles. This scenario represents a very conservative worst

case, where no new aircraft types or improved technologies ever enter use in the fleet.

This means that after all out-of-production aircraft have been retired the entire fleet

behaves as a homogeneous mix of current in-production types. The second analysis

repeated the technology scenarios under the alternate replacement schedule, once

again comparing against the BAU scenario. The results for each were quantified in

terms of savings relative to this BAU scenario.

Figure 61 overlays the cumulative fuel savings versus time for each technology

and replacement scenario. The cumulative savings relative to the BAU scenario

grow in time due to the increasing prevalence of operations by technology vehicles.

Additionally, the total volume of operations is steadily increasing over time. For the

alternate schedule, it was anticipated that the earlier entry of the VLA technology

aircraft would lead to better cumulative savings in time due to the significant
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Figure 61: Cumulative Fuel Burn Savings

vehicle-level savings observed in Figure 53, but in fact the cumulative savings lag

the baseline schedule. The shift in the cumulative savings curves directly correspond

to the delay in the single aisle programs. This highlights the importance of the SSA

and LSA classes which account for a majority of the NAS operations.

A better way to measure the fleet-level efficiency of each scenario is to normalize

the total fuel burn by the cumulative flown distance by the entire fleet. Figure 62

shows these efficiencies for each technology scenario as well as the BAU scenario.

Even the BAU scenario improves in efficiency in the early years, as out-of-production

vehicles with poor fuel economy are retired from the fleet and replaced by current

in-production aircraft. Over time, however, the fuel efficiency starts to degrade due

to changes in the distribution of flights between the classes, particularly due to

the sharper increase in demand for SSA flights. The MOD scenario also features

a parabolic change in fuel efficiency, but the inflection point is delayed later in

time. The ACC scenario repeats the pattern, but with a much shallower parabolic

shape and an inflection point occurring much later in time. The alternative schedule

scenarios demonstrate the same trends, but at slightly reduced efficiency. In order to
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avoid the eventual degradation in fuel efficiency in these future years, more advanced

vehicles with unconventional configurations must be introduced, but adopting a more

aggressive technology scenario in the near term delays the necessity for these advanced

configuration vehicles.

KNPQ

2015 2020 2025 RTUT RTUW 2040 2045 2050
WXW

6

ZXW

7

[XW

8

\]^

MOD

ACC

_`a ]bcdefgcd

ACC Abcdefgcd

h
i
j
k
l
i
mn
o
j
m
p
qr
st
n
u
j

h
kv
w
n
xy
z
{n
|
q}

Figure 62: Fuel Burn per Distance Flown

Noise analysis was only conducted every ten years and thus results are presented

as stacked bar charts instead of continuous curves. The stacks for the bar charts

correspond to the different operational groupings displayed in the parallel plots in

Figure 63. Bernardo used hierarchical clustering of operational volumes (Small,

Medium, and Large) and distributions by vehicle class to group the subset of

airports into eight operational classes [134]. These classes were then paired with

calibrated average runway geometries to define a reduced set of generic airports

which accurately represent the cumulative sum of contour area across the 94 airports

with less computational burden. The analysis in this study does not use Bernardo’s

generic airports because this would require the definition of a generic population grid

for population exposure comparisons. However, organizing results with respect to

these operational groupings provide better resolution of the impacts of the different
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vehicle classes for different airport types.

Figure 63: Generic Airport Operational Classes

The reductions in DNL 65-dB contour areas are displayed in Figure 64. It should

be noted that these results are not reductions relative to current day noise contour

areas, but rather to the worst case BAU scenario. In fact, the noise contour areas for

each technology scenario remain relatively static with increasing volume of operations.

The extreme contour area reductions in 2040 and 2050 are more demonstrative

of potential noise concerns due to operational growth if no advanced vehicles are

introduced to the fleet.

The first observation is that there is little difference between the two technology

scenarios. The ACC scenario features slightly better noise contour reduction than

the MOD scenario, but given that little difference was observed between technology

scenarios at the vehicle level (see Figures 54 and 55), it is not surprising that

the fleet-level results feature similar behavior. The second observation is that the

alternate schedule features the expected noise penalty due to the delay in the critical

single aisle program. The offset in noise reductions between the baseline and alternate
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Figure 64: Reductions in DNL 65-dB Contour Areas

schedules seems to be consistent with time, much the same as was observed in the

analysis of fuel savings. This offset is most noticeable for the S1 airport class, where

the SSA vehicle class comprises as much as 80% of daily operations (see Figure 63).

The reductions in population exposed to significant noise are displayed in Figure

65. The trends between scenarios are relatively similar to those observed for the

contour area reduction, although it is interesting to note that by 2050 there is no

perceptible difference in population exposure between the MOD and ACC scenarios.

The main takeaway from cross-referencing Figure 65 with Figure 64 is the

difference between the relative importance of each airport class. The contour area

reductions are fairly evenly distributed between the different airport classes, but

some of these classes feature much greater reductions in population exposure. For

example, the M1 class shows the greatest savings in population exposure but not

much more contour area reduction than the other classes. This class features an

approximately even balance of SSA, LSA, and STA operations. The M1 class

consists of international airports situated in densely populated areas, with most of
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Figure 65: Reductions in DNL 65-dB Population Exposure

these international flights allocated to the STA aircraft. The STA aircraft account

for 20-40% of operations at these airports, while they account for less than 20% of

operations for most of the other airport classes. With expected increase in demand

for international flights, these airports will likely see the most growth relative to

present day and much of this demand will be met with replacement STA aircraft.

Given the proximity and density of the surrounding population, these airports

more critically depend on advanced technology vehicles. On the other hand, the S2

airport class demonstrates sizable reductions in contour area but barely noticeable

reductions in population exposure. These airports are not located in population

dense areas, and thus the savings in contour areas do not actually contribute much

to the goal of reducing population exposed to significant noise.
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5.3.3 Summary of Observations

The analysis for each technology scenario showed that the ACC scenario leads to

considerably greater cumulative fuel savings, but there was not much difference in

the contour area and population exposure reductions between the MOD and ACC

scenarios. The noise results particularly demonstrate the importance of technology

infusion, as current population exposure counts may double by 2050 under a BAU

scenario. The alternate scenario demonstrated how critical the single aisle vehicle

class is to fleet-level savings, with a delay in the single aisle program translating

to consistent offsets in both cumulative fuel savings and reductions in population

exposed to significant noise. Comparisons between contour area and population

exposure reductions showed that the M1 class is most critical to the total population

exposure, which will benefit most from noise technologies applied to the single aisle

and small twin aisle vehicle classes. Focusing only on contour area reduction doesn’t

provide proper perspective on the relative importance of each airport class. By

enabling rapid calculation of community exposure, the relative importance of each

airport class can be better understood.

5.4 Placement of New Runways

The previous analysis demonstrated the implementation of the average generic

vehicles in an integrated fleet-level environment for exploring forecast scenarios

which can introduce vehicles with various technology packages for different market

introduction scenarios. This formulation, however, assumes that the airports will be

able to increase capacity to handle projected growth in operations. As mentioned in

Chapter 1, the evolution of the airports themselves must be considered simultaneously.

While there are many ongoing studies for improving airport capacity through

advanced NextGen Air Traffic Management (ATM) techniques, the only way for
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airport capacity to keep up with the projected major increases in demand is to expand

airports and build new runways. This led to the third over-arching research question

concerning a balanced evaluation of the impacts of these new runways in conjunction

with the infusion of new technology. Further questions concerning the placement of

new runways and the assessment of the impact to surrounding communities stem from

this research question.

ANGIM’s simple formulation places no constraints on locations, orientations, or

dimensions of runways, and thus the entire design space is theoretically available

for exploration. In actuality, choices for new runways are dependent on several

other factors beyond just the environmental impact including safety, efficiency, and

economics. The weight and degree of concern given to each of these factors depend,

in part, on: the Runway Design Code (RDC) which accounts for the types of aircraft

operating on the runway, the meteorological conditions, the surrounding environment

(including potential wildlife hazards), topography, and the volume of air traffic

expected at the airport [135].

Runway orientations are typically chosen to take advantage of the prevailing winds.

The most advantageous runway orientation based on wind is the one which provides

the greatest wind coverage with the minimum crosswind components. Wind coverage

is the percent of time crosswind components are below an acceptable velocity. The

desirable wind coverage for an airport is 95%, based on the total numbers of weather

observations during the record period, typically 10 consecutive years [135]. Historical

wind and weather data can be obtained from the National Oceanic and Atmospheric

Administration (NOAA). This analysis is used to determine if additional runways

are needed to provide the necessary wind coverage [136]. Given that most of the

airports considered in this study have long histories of aviation activities, it is assumed

that current airport infrastructures and runway orientations were chosen with all

of these issues under consideration. Thus, the orientations of new runways should
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likely reflect the current orientations, which suggests that with rare exceptions a

capacity-justified runway should be parallel to an existing primary runway [135].

Furthermore, additional primary runways for capacity justification are typically equal

in length to the existing primary runway, unless they are intended for smaller aircraft

[137]. A new parallel runway should also aim to minimize the number of runway

crossings, as this is likely to maximize the airport capacity benefits by reducing the

complexity of airfield simulation modeling [36].

Past standards for parallel runways have identified a separation distance of 4,300-ft

(0.71-nmi) or greater to maximize efficiency and provide highest hourly capacity

[138]. This is because under current FAA regulations, simultaneous landings on

parallel runways under low-visibility conditions are only permitted if those runways

are 4,300-ft apart. Many airports have parallel runways that are much closer to each

other than 4,300-ft, which means those airports’ capacity can be cut as much as

in half under low-visibility conditions [139]. NextGen driven airspace improvements

may enable improved levels of efficiency at closer separation distances even under

low-visibility, which will have a substantial effect on development at airports that

lack available lands for new runways, such as in dense metropolitan areas [6]. In fact,

technical reports on Automatic Dependent Surveillance-Broadcast (ADS-B) along

with advanced cockpit displays may make it feasible to reduce runway spacing to as

low as 750 feet (0.12-nmi) [139]. This closer separation distance may also have some

positive benefits with respect to encroachment of DNL noise contours.

With these potential improvements in mind, three degrees of freedom can

constrain potential new runway placements:

1. Choice of primary runway to build parallel runway next to (discrete variable

which depends on the number of existing runways)

2. Runway separation distance (Y2: [750-ft, 4300-ft] or [0.12-nmi, 0.71-nmi])
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3. Runway endpoint stagger (X2: range is airport/runway dependent)

Figure 66: Degrees of Freedom for Parallel Runway Placement

Bernardo showed that the last degree of freedom (runway endpoint stagger) has

little influence on overall contour area [79]. However, the stagger does translate the

locations of the contours, which may have an impact on population exposure.

5.5 Community Noise Exposure and New Runways

Given the simplifications of the fleet-level tool suite, the terminal-area fuel-burn and

NOx emission calculations were not spatially dependent. This makes it difficult to

address the impact of new runways on fuel-burn and emissions without resorting

to detailed tools such as AEDT which can include and evaluate fuel-burn and

NOx penalties for various taxiing procedures and flight ground-tracks. However,

the structure of ANGIM displayed in Figure 20 enables the inclusion of airport

infrastructure and runway configurations to capture the spatial nature of the noise

metrics. Furthermore, the population grid method described in Chapter 5 enables this

spatial data to capture population exposure counts surrounding the airport. While

changes in the fleet-composition, flight ground-tracks, volume of operations, and

aircraft technologies will lead to changes in the size and extent of the DNL-contours,

changes in airport infrastructure will lead to the most significant changes in the shape
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of these contours. Given that noise exposure is the most significant environmental

concern for communities near airports, ANGIM can be used as a screening-level tool

for conducting preliminary Environmental Assessment (EA) studies with regards to

new Airport Layout Plans (ALP). Furthermore, ANGIM’s formulation and speed

allows for the flexibility of exploring several potential locations for new runways.

Combinatorial designs of experiments were formulated to sample the continuous

space of new runway locations corresponding to the previously mentioned three

degrees of freedom at a subset of ten airports in need of additional capacity. Custom

ranges for parallel and lateral spacing of new runway endpoints with respect to each

primary runway were derived heuristically by examining airport layout diagrams from

FlightAware R© as well as satellite maps of the surrounding communities, and thus

each airport featured unique designs of experiments. Ranges for each spatial variable

were kept as wide as possible, with minimum parallel separation corresponding to the

750-ft separation enabled by ADS-B. Care was taken to avoid new runway locations

that intersected interstate highways or clearly occupied residential areas, but bay fill

was assumed to be an acceptable option at a few airports. Runway locations were

also chosen in an effort to minimize runway crossings and if possible avoid the need

for moving existing airport terminals. An example of a runway exploration design of

experiments for an airport with two sets of parallel runways is shown in Figure 67.

The solid lines represent existing airport runways, and the dashed lines are samples

of possible new runways. The rectangles display the spatial area explored for one

runway endpoint, with the length of the runway set equal to its parallel existing

runway. It should be noted that the size of the runway endpoint design space varies

for each runway due to surrounding obstacles including highways, terminals, and

other runways. For example, the parallel runway to Runway 4 is very limited in

placement due the existence of a terminal, and the runway endpoint design space

intersects Runway 1 near the edges. A parallel runway to Runway 2 has much more
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flexibility in placement and thus the runway endpoint design space is wider. Each

design space was sampled with 1000 experiments, with the scale of the resolution

varying depending on the size of the design space. For each sample, the DNL contour

areas and population exposure counts were computed. This allows for visualization

of the continuous space by “heat maps” that show the best and worst locations in the

design space depending on which metric is used (contour area or population exposure).
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Figure 67: Example of Runway Placement Explorations

Given that new runways take 10-14 years to finish, it was assumed that each

runway would be introduced after a decade and be available for use in 2030 [38]. The

2030 flight schedules at each airport from the previous three technology scenarios

(BAU, MOD, and ACC) under the baseline market introduction rates were used for

analysis. By using average generic vehicles with technology infusion, the combined

community impacts of technology integration and new runway locations can be

evaluated. Vehicle-level noise technologies may be a key factor for enabling capacity

expansions at otherwise capacity constrained airports via increased flexibility for new

runway placements. This is justified by the manner that noise is calculated within
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ANGIM as described in Chapter 4. ANGIM first calculates the runway-level DNL

grids. These grids are strictly a function of the vehicle-level contours for aircraft with

operations on that runway, and thus the only way to significantly change the size

and extent of the runway-level contour is to infuse vehicle-level noise technologies.

After the runway-level DNL grids are calculated, they are translated and rotated

to correspond to the specified runway configuration. This determines the spatial

reference for the runway-level contours, and the overlap of multiple runway-level grids

determines the airport-level noise contours. Assuming that noise technologies are able

to reduce the size of the noise contours emanating from each runway axis, more margin

may be built into the placement of the new runway before significant encroachment

on the surrounding population occurs.

Examples of results for two of the ten airports are included in this chapter.

The specific airport names are not listed for sensitivity reasons. Additionally, all

results in the heat maps are normalized by the 2030 contour area and population

exposure for the BAU scenario, which represents the worst case scenario with no

technology vehicle introduction and no new runways. The heat maps and runway

layout plots presented in this chapter were repeated for every runway at each of the

ten airports. The results for each airport and each potential runway location are

unique due to differences in runway configurations and distributions of population in

the surrounding communities.

5.5.1 Example Airport: Multiple Parallel Runways

The first example is a large hub airport with multiple parallel runways as shown in

Figure 68. This is the most efficient runway configuration for capacity considerations,

and with ADS-B allowing for closely spaced runways this airport is an excellent

candidate for expansion. The noise analysis quickly determined that each of the three
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runway explorations led to comparable noise contour area results, but the exploration

of a runway parallel to Runway 1 featured significantly reduced population exposure

compared to the other two explorations.
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Figure 68: Multiple Parallel Runway Placement Explorations

An example of a heat map for the runway exploration experiment is shown in

Figure 69. The filled contours demonstrate the best locations (blue) and worst

locations (red) for placement of a new runway with respect to a given metric. It

should be noted that the parameters in the design of experiments were referenced to

the endpoint of the parallel runway, and thus the results in Figure 69 are actually

vertical mirror images with respect to the orientation displayed in Figure 68. The

results are presented for the ACC scenario, with contour area (left) and population

exposure (right) shown side-by-side for comparison. All of the normalized values are

less than one, which is indicative of the noise reductions from the infusion of the

advanced technologies.

If choosing a runway location for minimal contour area under this technology

scenario, the heat map shows the importance of the parallel spacing. The best
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Figure 69: Parallel Runway 1 Heat Maps

locations correspond to the closest and furthest parallel spacings. Given the proximity

of Runway 5 to this runway exploration space, the results suggest that area is reduced

by placing a new runway as close as possible to an existing runway. This close

spacing would not be a feasible solution for alleviating capacity constraints without

ADS-B technology. Cross-referencing the contour area heat maps with the population

exposure heat maps, it can be seen that wider parallel spacing from Runway 1 (closer

to Runway 5) is ideal. Furthermore, population exposure depends on the lateral offset

of the new runway whereas contour area showed little dependence on lateral spacing.

By including the population exposure counts in the analysis, an airport planner can

gain a clearer picture of spatial dependencies and intelligently choose a new runway

location. The best runway locations for each metric are shown in Figure 70.

The configurations for minimal contour area versus minimal population exposure

show quite different results. An overlay plot of the DNL 65-dB contours for each

configuration are shown in Figure 71. Due to the sensitivity of the data, the axes

and scales for these contours are purposely omitted. A qualitative comparison of

shape suffices to understand the results. Runway 1 and Runway 2 are already very

closely spaced, and thus their overlapping runway-level contours lead to lobes that

extend further than the lobes from Runways 3, 4, and 5. For minimal area, a runway
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Figure 70: Best Runway Locations from Runway 1 Exploration

placement with minimal parallel spacing further extends these center lobes, but

the lobes for the other runways remain small. For minimal population exposure, a

new runway placed closer to Runway 5 leads to more balanced lobes. This runway

location increases the size of the bottom contour lobes, but this prevents the center

lobes from encroaching on the nearby population.
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Figure 71: New Runway Contour Comparison: Area v. Population
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5.5.2 Example Airport: Dual Parallel & Intersecting Runways

The second example is a medium sized airport that is expected to have significant

growth in operations in the future. The airport configuration features two sets of

parallel runways, with each set perpendicular to the others as shown in Figure 72.
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Figure 72: Dual Parallel & Intersecting Runway Placement Explorations

This is an example of an airport on a waterfront. Generally airports on the

water try to take advantage of flight tracks over waterways to minimize population

exposure. Extending a runway into the water accomplishes much of the same

reduction in population, but there are other environmental impacts to filling in a

bay for constructing new runways. Ideally these impacts and capacity considerations

could be evaluated in conjunction with the noise analysis, but this is beyond the scope

of this analysis. In Figure 72, Runway 4 borders the water and a new parallel runway

would require some bay fill, but allows for minimal population exposure compared

to the other options. The runway exploration parallel to Runway 2 also extends one

runway endpoint into the water, but these runways extend onto the land between
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Runways 2 and 3. Thus the bay-fill associated with this exploration would not be as

significant.

Heat maps for the contour area and population exposure for the runway placement

exploration between Runways 2 and 3 are shown in Figure 73, with the parameters

referenced to the Runway 2 endpoint. These heat maps include both the BAU (top)

and the ACC (bottom) scenarios for comparison. Once again the parameters are

referenced to the endpoint of Runway 2, and the results in Figure 73 are actually

rotated 90◦ with respect to the orientation of the exploration space shown in Figure 72.
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Figure 73: Parallel Runway 2 Heat Maps

Between the two scenarios, the heat maps for minimizing contour area look fairly
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similar, with the best locations corresponding to a negative lateral spacing. This

lateral spacing translates the new runway location as far inland as possible, which

means extending the runway into the water (positive lateral spacing in this case)

actually leads to larger contour areas. However, most of the contour growth for a

runway that extends into the water would be concentrated over the water where no

one lives. This is reflected in the BAU population exposure heat map, which favors

new runway locations that extend into the water. The corresponding population

exposure heat map for the ACC scenario features very different behavior. All of the

locations lead to greatly reduced population exposure relative to the BAU scenario

thanks to the advanced technology infusion. However, the best new runway locations

for the ACC scenario no longer show as much dependence on the lateral spacing.

The heat map suggests the best locations correspond to a runway with wide parallel

spacing relative to Runway 2 (closer to Runway 3). Figure 74 shows the best new

runway configurations for minimizing population under the BAU and ACC scenarios,

respectively.

The vastly different new runway layouts reflect the observations from the heat

map. Under the BAU scenario, the corresponding growth in the size of the contour

requires a mitigation strategy that pushes the runway endpoint as far into the water

as possible, which minimizes the encroachment on the community living on the other

side of the airport. For the ACC scenario, technology infusion reduces the vehicle-level

noise footprint. This technology infusion actually allows an airport planner to open

up the design space for the new runway location. In this scenario, the location that

minimizes population exposure also requires less extension into the bay, which would

likely reduce other environmental concerns related to construction of new runways.

An overlay plot of the DNL 65-dB contours for each configuration are shown

in Figure 75. Once again, the axes and scales for these contours are purposely

omitted. A qualitative comparison of shape suffices to understand the results. The
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Figure 74: Best Runway Locations from Runway 2 Exploration

first observation is the level of reduction in the contour that results from infusion of

technologies. This is most evident from the recession at the lobe closure points. In

the BAU scenario, adding a new runway between Runways 2 and 3 leads to overlap of

their runway-level contours and a corresponding encroachment at the contour ends.

Under the ACC technology scenario, the new runway is placed close to Runway 3,

and significant recession in the contour closure point corresponding to Runway 2 is

observed. The reduction in the closure point for Runway 2 explains the reduction in

population exposure.
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Figure 75: New Runway Contour Comparison: BAU v. ACC
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5.5.3 Fleet-Level Integration of New Runways

The runway exploration experiments were unique for each airport, but the two

examples included are representative of general observations. The explorations

enabled quick identification of the best locations for new runway placement, and

the heat maps provided visual feedback on spatial trends. Very rarely did the new

runway location for minimal contour area correspond to the location for minimal

population exposure. The locations for minimal contour area did not typically

change much between technology scenarios, although the sizes of the contours were

considerably reduced with technology infusion regardless of runway placement. The

locations for minimal population exposure sometimes changed between the BAU

scenario and the MOD or ACC scenarios as was observed in Figures 73 and 74. This

wasnt true for every experiment because each airport and surrounding community is

unique, but reductions in vehicle noise signatures prevent encroachment of contours

into densely populated areas and allow airport planners more flexibility with new

runway placements. This implies that an airport planner must consider the future

composition of the fleet when choosing a location for a new runway for best allocation

of noise.

While the runway placement experiments were designed to mitigate expected

increases in population exposure, the analysis revealed that addition of a new runway

can actually reduce population exposure counts at many of the airports. Most of

these experiments found new runway locations that led to less population exposure

than the baseline configuration, even for the BAU fleet scenario. These experiments,

however, were performed only for a single year (2030). By integrating these new

runway configurations into the fleet-level analysis, total population exposure counts

over time were directly compared to the same scenarios without new runways to

quantify the savings introduced by these new runway locations. The results from this

final analysis are shown in Figure 76. Only a few of the airport classes from Figure
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63 were included in the new runway study, and thus only this subset of airport

classes is included in Figure 76.
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Figure 76: Reductions in Population Exposure with New Runways

These results are referenced to the previous fleet-level scenarios that did not

include new runways. For the BAU scenario, the results show significant savings

which are strictly due to intelligent placement of runways. In this case, no

technology vehicles were introduced and yet population exposure reductions were

still achievable. For the MOD and the ACC scenarios, the results are additional

savings relative to the scenarios shown in Figure 65. The savings are less than the

BAU scenario because reduction of aircraft noise signatures of the aircraft already

introduces significant reductions in population exposure, but the results show that

intelligent selection of new runway placement enables airport capacity expansion

without additional encroachment on the surrounding community. Often this selection

of new runways leads to an increase in the contour area, as demonstrated in Figure 77.
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Figure 77: Increases in DNL 65-dB Contour Area with New Runways

The results in Figure 77 demonstrate that simply measuring DNL 65-dB contour

area without considering the distribution of population around an airport may lead

to misleading analysis. While at the vehicle-level decreasing the aircraft noise foot

print is always recommended, the true metric of interest is the population exposure

to significant noise. For this reason the spatial distribution of noise is much more

important than the geometric size of the DNL contours. For all three technology

scenarios, the new runways that reduce population exposure simultaneously increase

in the net contour area across the subset of airports.

5.6 Summary of Capability Demonstrations

The generic vehicles and the Thiessen polygon population grids were incorporated

into an enhanced fleet-level environment to perform scenario analysis. A system

dynamics model that uses existing forecasts to generate future operational schedules

at each airport was linked to the rapid noise computation model in an automated
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fashion. Technologies were infused on the generic vehicle models in the physics-based

vehicle-level tool demonstrating improvements in fuel burn and reductions in aircraft

noise signatures. Various technology scenarios were defined, and these technology

vehicles were used as replacement aircraft for two replacement scenarios. Each

scenario was compared to observe trends in cumulative fuel savings as well as

reductions in contour area and population exposure for different airport types.

Finally, an exploration of new runway locations was conducted at ten capacity

constrained airports for each technology scenario.

Fleet-level analysis showed the critical importance of technology improvements

specifically for the single aisle vehicles for both fuel savings and reduction in

population exposure to significant noise. Infusion of noise technologies for the small

twin aisle class is also critical, as these aircraft are allocated a significant share

of operations at international airports. These airports are expected to see the

largest growth in demand, with much of this demand leading to more flights by the

small twin aisle vehicle class. The runway explorations demonstrated the difference

between airport planning for contour reduction versus planning for reduced population

exposure. Best locations for new runways sometimes changed when considering the

infusion of advanced technology vehicles. Fleet-level integration of new runways for

each of the ten airports showed that it is possible to increase airport capacity and

simultaneously reduce population exposure to significant noise, even for a scenario

with no technology vehicles. These locations for minimizing population exposure

corresponded to increases in contour area, which suggests that the latter is not the

appropriate metric to consider when planning for airport expansion with new runways.
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CHAPTER VI

CONCLUSION

All of the capabilities and analyses presented in this dissertation address the

overarching research objective as presented in Chapter 1:

Research Objective: To develop a framework for modeling relevant

environmental performance metrics and objectively simulating the future

environmental impacts of aviation given the evolution of the fleet, the development

of new technologies, and the expansion of airports.

This objective was motivated by recent international focus on the environmental

impacts of aviation, specifically the ICAO goals concerning GHGs, terminal-area air

quality, and community exposure to significant noise. The framework was formulated

for flexible exploration of different technology scenarios, and hinges on modeling and

simulation. This led to the following overarching hypothesis:

Overarching Hypothesis: By exchanging fidelity for computational speed,

a screening-level framework for assessing aviation’s environmental impacts can be

developed to observe new insights on fleet-level trends and inform environmental

mitigation strategies.

The reduction of the fleet to a handful of generic vehicles represents an exchange

of fidelity for computational speed. Mapping Census block population data to a

grid conforming to the dimensions of a rapid noise computation model is another
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example of exchanging fidelity for speed. These methods enabled the framework

for assessing aviation’s environmental impacts. This was accomplished through

modeling and simulation of performance improvements and technology compatibilities

at the subsystem level for the generic vehicle models and propagating these results

to aircraft-level environmental performance. The aircraft-level results are linked

to forecast schedules of operations to project the fleet-level results with respect to

assumptions of growth rates and replacement schedules. The modularity of the

methodology also allowed for exploration of new runway configurations to account

for potential evolution of airport infrastructures, which has implications for capacity

constraints as well as community noise exposure around airports.

The capability demonstration and analysis included in Chapter 5 led to a few

insights on fleet-level trends that can inform environmental mitigation strategies. A

few examples of fleet-level trends observed are listed below:

• Technology improvements for the Single Aisle vehicle class are most critical due

to the projected increase in demand for replacement aircraft from this class,

and thus Single Aisle aircraft technology programs should be prioritized.

• International hub airports contribute to a large percentage of the total

population exposure counts across the subset of major US airports. These

airports feature more operations by Small Twin Aisle aircraft than other airport

classes, and these operations may increase dramatically with the anticipated

growth in demand for international travel. Noise technology programs should

prioritize these Small Twin Aisle aircraft (along with the Single Aisle aircraft).

• Increases in airport capacity by construction of new runways can be

accomplished without increasing population exposure counts, particularly when

paired with noise technologies applied to aircraft. This requires intelligent

placement of runways with knowledge of population densities in communities

190



www.manaraa.com

surrounding the airport. Often a solution for reducing population exposure also

corresponds to an increase in contour area.

The analysis conducted and this list of observations is by no means exhaustive, but

they demonstrate the utility of this framework to inform environmental mitigation

strategies. This supports the overarching hypothesis, and presumably more specific

strategies can be derived by exploring more technology and replacement scenarios.

By reducing the computational expense associated with this type of analysis, the

framework demonstrates more flexibility to enumerate and compare more scenarios

and provide policy-makers with better perspective on the future environmental

impact of aviation.

6.1 Summary of Contributions

The GENERICA method for optimizing generic vehicles, the enhancements of

existing airport-level (ANGIM) and fleet-level (GREAT) tools, and the exploration

of new runway locations each represent major contributions introduced in this work.

The techniques and lessons learned for each are briefly summarized.

6.1.1 Average Generic Vehicles with Noise

Chapter 2 reviewed the average generic vehicle methodology introduced by Becker

in his dissertation, but this approach was limited to evaluation of fuel burn and

NOx emissions. Because DNL noise is an airport-level metric, Becker’s test structure

was insufficient for optimizing generic vehicles that can also approximate fleet-level

noise performance. In response to this capability gap, the method for Generating

Emissions and Noise, Evaluating Residuals, and using Inverse methods for Choosing

the best Alternatives (GENERICA) was developed. The primary difference between
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Becker’s method and GENERICA was the characterization of fleet-level performance

at each airport in addition to the cumulative fleet-level metrics. Instead of just

minimizing cumulative error, GENERICA attempts to minimize the mean error and

variance of the relative error distributions for each metric across the subset of airports.

Becker showed in his work that the generic vehicle method was more effective at

representing aggregate fleet-level fuel burn and NOx emissions than a traditional

representative-in-class approach, and it was hypothesized that the enhancements

enabled by GENERICA would show that this also holds for DNL 65-dB noise contours

as well.

An alternative vehicle classification scheme was introduced that used discriminant

analysis to bin aircraft according to common vehicle-level performance with

respect to the collection of environmental metrics. These “vehicle classes” were

expected to reduce performance variance within each class compared to traditional

seat-class-based groupings, and it was hypothesized that this would enable individual

generic vehicles to better represent the aggregate performance of each group. To

test this hypothesis, the GENERICA method was repeated using both classification

schemes. A test structure of sequentially increasing complexity was designed for

traceability of generic vehicle performance with respect to different operational

variations across the subset of airports. It was shown that by isolating the operational

distributions of each vehicle class from other operational complexities, rapid design

space exploration and exploitation was possible using design of experiments, surrogate

modeling, Monte Carlo simulation, and “desirability” scores for multi-criteria decision

making, as formulated in Chapter 3 and implemented in Chapter 4. It was

hypothesized that the surrogate models would identify the best locations in the

vehicle-level design space for matching fleet-level results, and that these models

would continue to demonstrate accurate performance across the subset of airports as

other sources of variability (trip-length distributions, volumes of operation, airport
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infrastructure, etc.) were re-introduced.

The results showed that the generic vehicle models depend mostly on the

thermodynamic cycle design and the sizing of the engine. The top ranked vehicles

for each test were widely distributed with respect to many of the vehicle-level

input parameters, but the best models featured similar engine OPR, BPR, and

sea-level static thrust. These best designs continued to perform well as the

operational complexity of the target metrics were increased. The final tests showed

that the generic vehicle method demonstrated better accuracy than traditional

representative-in-class vehicles. This method proved even more critical for the

cumulative DNL 65-dB contour areas. The representative vehicles performed well

for noise at smaller airports with less operational variability, particularly if the

representative vehicles were allocated the majority of the operations per class at these

airports. For larger airports with more variability and greater volumes of operations,

the generic vehicles performed better. Since the large airports contribute more to the

cumulative contour areas, the generic vehicle models featured superior accuracy for

cumulative noise. All hypotheses were supported, but the generic vehicle classes only

demonstrated marginal improvement relative to generic seat classes. The hypothesis

concerning the aircraft classification schemes was weakly supported, but this served as

a testament to the flexibility of the GENERICA method to optimize generic vehicles

with respect to any vehicle classification technique.

As baseline schedules and the composition of the current fleet change over time,

the GENERICA method can be repeated and the generic fleet can be updated to

reflect these changes. The surrogate modeling approach used for Test A would

be sufficient, which significantly reduces the amount of data preparation and

computational burden required to repeat the generic vehicle optimization. In this

manner, the GENERICA method can serve as a standard for reducing the complexity

of the fleet regardless of the specific modeling tools used provided these tools meet
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the requirements enumerated in Chapter 2. The resulting generic vehicles can serve

as virtual testbeds for technology infusion that can be used for fleet-level analysis.

6.1.2 Fleet Analysis with Average Generic Vehicles

Chapter 5 focused on the enhancement of the integrated fleet-level environment for the

purpose of meaningful analysis. The goal of these enhancements were to leverage the

generic vehicles and link them to existing forecasts of operational schedules. The first

enhancement required logic to filter and export flight schedules for each of the airports

from an existing system-wide fleet-level environmental performance model to the rapid

noise tool. This allowed for simultaneous evaluation of each performance metric with

respect to a common set of operations, forecast assumptions, and vehicle replacement

schedules. In this manner, bottom-up analysis that was previously only possible for

fuel burn and NOx emission evaluations can now be linked to noise projections.

The rapid noise tool only featured a capability for calculating DNL grids and noise

contours, but the true metric of interest is the population exposure to significant

noise. Importing the noise contours into a Geographical Information System such as

ArcGIS R© is possible given proper geospatial referencing of runway endpoints, but this

approach is computationally expensive and requires complicated setup. Furthermore,

this doesn’t take advantage of the existing architecture of the rapid noise tool.

Instead, a method was created that exported population data into discretized grids

that matched the dimensions and resolution already used for the rapid noise tool’s

DNL grids. This population data was collected for each airport through one time

pre-processing of 2010 Census blocks in ArcGIS R© through the area-weighted method

described in Chapter 3. The end result was a library of population grids that can be

called by the rapid noise tool and link noise analysis to the distribution of population

surrounding an airport. By cross-referencing the DNL grids with the corresponding
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population grids, community noise exposure may be rapidly calculated simply by

summing the population counts for grid points with DNL decibel levels above a

given threshold (typically DNL 65-dB). In this manner, community noise exposure is

integrated into the noise tool with almost no increase in runtime, thus leveraging the

speed of the existing tool.

The final enhancement was the infusion of technology on the average generic

vehicle baselines. In the near term, replacement operations are allocated to the

baseline generic vehicles, but the main goal of the integrated analysis is to quantify

the level of improvement due to various technology packages and the dependence

of these results on the forecast and replacement assumptions. To demonstrate this

capability, a Moderate (MOD) and an Accelerated (ACC) technology scenario were

each defined and savings with respect to a Business-as-Usual (BAU) scenario were

quantified. A baseline and an alternate replacement schedule were each implemented

to demonstrate the criticality of first integrating advanced technologies on the Small

Single Aisle (SSA) and Large Single Aisle (LSA) classes.

Results from fleet-level fuel burn analysis showed various levels of cumulative

fuel savings. By normalizing the results with respect to distance flown, it was

observed that for each scenario there was an inflection point in fuel burn efficiency.

These inflection points occur at different points of time for each scenario, with more

accelerated technology infusion pushing this inflection point far into the future. The

takeaway from this analysis is that accelerating these technology programs in the

N+1 and N+2 time frames buys more time for the development of unconventional

designs with revolutionary fuel burn savings as is targeted in the N+3 time frame.

Results from fleet-level noise analysis showed significant savings in contour area

and population exposure relative to the BAU scenario. The savings were comparable

between the MOD and ACC technology scenarios, as the vehicle-level improvements

in noise were significant compared to the baseline vehicle contours but did not vary
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greatly between scenarios. The noise savings were more reflective of the problem in

the BAU scenario than a decrease in the DNL contours across the subset of airports.

In fact, the contour areas for the MOD and ACC scenarios remained relatively

static over each decade while the volumes of operation increased significantly at each

airport. Comparisons between contour area savings and population exposure savings

showed that the relative importance of each airport class differed depending on the

metric of choice. The savings at the M1 class if airports, for instance, represented

a greater proportion of the population savings than the contour area savings. The

savings at the S3 class of airports represented a greater proportion of the contour

area savings than the population savings.

6.1.3 Exploration of New Runway Locations

Chapter 5 explored potential options for placement of new runways to increase

airport capacity. This was accomplished through spatial designs of experiments

conducted for a set of ten airports in need of capacity enhancement by 2030. These

experimental designs were derived heuristically by examining airport layout diagrams

and attempting to constrain new runway locations based on existing obstacles. For

each airport and each potential new runway, “heat maps” were generated that show

the continuous dependence of contour area and population exposure on the location of

the new runway endpoint. Visualization of results through these heat maps was made

possible by the inexpensive computation times associated with the rapid noise tool

coupled with average generic vehicle classes and the previously developed population

grid method.

The designs of experiments were repeated across the ten airports for the 2030

flight schedules corresponding to the three technology scenarios (BAU, MOD, and

ACC), and the heat maps were normalized by the results for the BAU scenario
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with baseline runway configurations (no new runways). A few general trends were

observed, although results were unique for each airport due to different layouts

and population distributions. The locations of new runways for minimum contour

areas were often very different from the locations for minimum population exposure,

as the latter attempted to balance the encroachment of the contour lobes into

population centers while the former focused on the overall size of the contours. The

locations for minimizing population exposure sometimes changed between the BAU

and the two technology scenarios, demonstrating the increased flexibility of runway

placements enabled by reduced vehicle-level noise footprints. Most importantly,

integration of the best new runway locations for minimizing population exposure

showed that intelligent runway design can identify future airport configurations with

new runways and simultaneous decrease in population exposure, even in the BAU

scenario. The results from this fleet-level integration showed that these new runway

locations typically lead to increase in cumulative contour areas, which suggests that

airport-level noise analysis must not focus on contour area alone.

6.2 Future Work

Many simplifying assumptions were necessary to scope this research, and future work

can be derived by exploring these assumptions in greater detail. Some future work

items are discussed with respect to each of the major contributions, but the list is

not exhaustive.

6.2.1 Incorporate Stochastic Parameters in GENERICA Method

The test structure for the GENERICA method identified several sources of

operational complexity, but the weighted frequency of each of the unique constituent

vehicles proved to be the most important factor. A few complexities were not
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included, however, including the unique atmospheric conditions and flight tracks

associated with each airport. While these represent stochastic parameters associated

with the airports, it is not certain how including these parameters when generating

the target metric distributions may change the input parameter settings of the

best generic vehicles. Furthermore, surrogate models could be developed that map

variations in vehicle-level performance to deviations from standard day sea-level

atmospheric conditions or alternatives to the currently used straight-in straight-out

ground tracks. Some of these methods have been explored in Refs. [140], [141], and

[142]. Enabling average generic vehicles to capture these deviations would broaden

the scope of scenario-analysis capabilities for the integrated fleet-level environment.

6.2.2 Additional Analysis with GREAT-A

The fleet-level analysis was scoped considerably for this work, but there are

several areas for potential improvement. Many more technology scenarios may be

enumerated, including novel engine architectures (such as geared turbofan engines)

and unconventional configurations (such as hybrid-wing body and box-wing concepts).

These designs would not require a generic vehicle approach given the fact that

the current fleet does not include these vehicles, although efforts should be made

to match baseline concepts to publicly available data on projected performance of

these aircraft. Sensitivities of fleet-level performance to market penetrations of these

advanced concepts could then be weighed against advanced tube-and-wing technology

vehicles.

The analysis did not take advantage of many of the parametric formulations

for operational schedules available in the system-wide fleet-level environmental

performance model. Options for scaling the growth of operations and adjusting

retirement curves were set to default values for all analysis in this work. Future work
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may take advantage of these additional parameters for broader scenario analysis.

More alternate replacement schedules could also be explored. Furthermore, the

noise analysis did not include vehicle-level noise grids for out-of-production vehicles.

Volume of operations were conserved at each airport, but the out-of-production

operations were allocated to baseline generic vehicles. Including the actual

out-of-production vehicle grids or at least a representative set of these vehicles

would allow for benefits analysis of policies that accelerate the retirement of these

older, noisier aircraft. It should be noted that the fuel burn analysis did include

out-of-production aircraft.

The analysis of terminal-area NOx emissions was scoped from the final analysis,

primarily because engine combustor technologies were not included in the technology

packages for the MOD and ACC scenarios. NOx evaluations should be included

in the future, but terminal-area NOx evaluations require a surrogate modeling

approach that links changes in baseline emissions to deviations from standard day

sea-level atmospheric conditions. Preliminary observations of advanced combustor

technology models have demonstrated significant reductions in NOx emissions.

These technologies will be key enablers for higher OPR engines by mitigating the

corresponding increases in NOx.

The noise analysis assumed uniform utilization of runways with cross-flow, but in

fact many airports feature dedicated runways for departure or approach operations.

While runway utilization at these airports are not publicly available, access to existing

inventories would allow for more accurate representations of airport usage which could

lead to significant changes in the DNL contour shapes. The impact of the uniform

utilization should be investigated in more detail, and if possible these utilization

factors and constraints should be incorporated into the rapid noise formulation.

In addition, all analysis was performed using static population data from the

2010 Census blocks. Including population dynamics to simulate potential growth
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or decay in population counts around airports would be more representative of

reality, although much uncertainty is associated with projecting future population

distributions at this level of resolution. These population growth models could

possibly be calibrated by repeating the population grid exporting procedure at

Census blocks from 1990 and 2000 and observing the population dynamics per grid

point over time.

6.2.3 Evaluating New Runways for Capacity Improvements

The new runway explorations limited the analysis to noise with the assumption that

these runways would create the necessary increase in capacity. Future work should

link these explorations to capacity models to show the tradeoffs between capacity

enhancement and noise exposure. The costs associated with bay-fill should also

be investigated in more detail, and fleet-level integration of new runways should be

adjusted if bay-fill is not a feasible option.

The runway explorations would also be improved by actual runway utilization

information. Future scenario analysis could explore not only new runway locations

but also optimal utilization for best spatial allocation of noise. Further population

exposure reductions may be possible through curved ground tracks or steeper

continuous descent approaches, and thus these tracks should be considered in

conjunction with the runway placements.
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APPENDIX A

STOCHASTIC MULTI-CRITERIA ACCEPTABILITY

ANALYSIS (SMAA)

Many traditional Multi-Criteria Decision Analysis (MCDA) methods exist today and

can be applied to a variety of problems. Several of these require the decision-maker

to provide preference information, often in the form of weights. Complications

associated with these methods arise because the solutions to these problems are highly

dependent on the preference information. The preference information is subjective

and dependent on the different stakeholders involved in the problem. In some

situations, the preference information can be incomplete, and in other situations

involving multiple decision-makers, inconsistent preference information may result

due to the differences in opinions [149, 164].

One of the oldest MCDA methods is the utility function-based approach. This

approach uses a utility function to calculate a utility score for each alternative,

given the evaluations of the alternative’s criteria. The utility function expresses

the decision-makers’ preferences in the form of numeric values, the utility score,

where larger values are favorable. This method has been intensively researched

and applied in various applications, however it has become apparent that the

exact parameter values required from earlier methods are not sufficient in all

decision-making situations.

Assigning exact values to parameters disregards the ignorance in a problem,

where ignorance is classified by three subcategories: incompleteness, imprecision,

and uncertainty. Assigning exact parameter values may also be difficult when the

problem involves multiple decision-makers whom possess differences in opinions. By
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assigning these exact values, the solution found for the problem becomes difficult to

justify. Alternatively, an inverse method should be applied. Instead of inputting

exact parameter values and finding one solution, the parameter values are described

as a result from analyzing different sets of outcomes. In 1973, Charnetski introduced

the comparative hypervolume criterion, with further study in 1978 by Charnetski and

Soland. This criterion is based on calculating the volume of the multi-dimensional

weight space for each alternative which make that alternative the preferred one. The

method uses preference information in the form of linear constraints for weights,

but it is limited to deterministic values for criteria measurements, only allowing the

use of additive utility functions [145, 146]. The overall compromise criterion was

introduced in 1986 by Bana e Costa. The objective of this method is to identify a set of

weights which results in the least amount of conflict between various decision-makers.

Each decision-makers preferences are taken into consideration in defining the joint

probability density function for the weight space. Each point in the weight space

corresponds to an acceptability index, a measure of the degree of acceptability. The

aggregation of the acceptability indices leads to the overall compromise criterion, the

parameter used for finding the set of weights with the least conflict [147]. In theory,

the method is very useful; however in practice, it is limited to only handle three

criteria [164].

The latter methods significantly influenced the development of the Stochastic

Multicriteria Acceptability Analysis (SMAA) by Lahdelma et al. in 1998 [155].

SMAA is an inverse MCDAmethod, which explores the feasible parameter spaces with

multidimensional integrals. SMAA calculates descriptive measures which provide

information to assist the decision making process. This allows the ignorance within

a parameter and the inconsistent preferences to be defined and become beneficial in

finding a solution instead of being detrimental to the justification of a solution.

SMAA is a utility function-based MCDA technique, which allows decision-makers
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the ability to explore the weight space as an alternative to pre-defining subjective

and possibly inconsistent preferences or weights. The fundamental idea behind

SMAA is to support decision-makers by calculating descriptive measures, which help

describe the potential weights and the corresponding outcomes. SMAA describes the

set of weighting combinations, which make each alternative the preferred alternative.

A.1 SMAA [164, 155]

In a discrete multi-objective problem, there are m alternatives x =

{x1, x2, . . . , xi, . . . , xm} which are evaluated by n criterion, {g1, g2, . . . , gj, . . . , gn},

where gj(xi) represents the evaluation of xi by criterion gj. The method allows

multiple decision-makers the ability to express their preferences by an individual

weight vector, w and any type of utility function u(xi, w) which is jointly accepted

by all the decision-makers. The additive linear utility function is the most commonly

used and given by the following:

u(xi, w) =
n
∑

j=1

wjgj(xi) (26)

The weight vectors are comprised of individual weights, wj for each criterion. Each

weight value is positive and normalized acting as a scaling factor. The set of feasible

weight vectors define the weight space, W as shown below:

W =

{

w ∈ Rn : w ≥ 0,
n
∑

j=1

wj = 1

}

(27)

Unlike many traditional utility function-based methods, SMAA allows

decision-makers to define the ignorance in a problem such as in the criteria and

in the weights. Ignorance includes the imprecision, incompleteness and uncertainty

as previously mentioned. The criteria’s ignorance is represented by stochastic
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parameters (ξij) corresponding to the evaluation of gj(xi) with the density function,

fχ(ξ), where the density function is defined in the space χ ⊆ Rm×n. Similarly the

ignorance in the weights is represented by weight distributions with joint density

function fw(w) defined in the weight space, W . In certain problems, where a complete

lack of weight information exists, the density function is represented by a uniform

distribution in W .

fw(w) =
1

volume(W )
(28)

For each alternative, xi the set of favorable weights, Wi(ξ) is determined. The

set of favorable weights is defined as the set of weight vectors which make the utility

score of alternative xi larger than or equal to any of the other alternative’s utility

score u(ξk, w), making the alternative xi the most preferred alternative.

Wi(ξ) = {w ∈ W : u(ξi, w) ≥ u(ξk, w), ∀k = 1, ...,m} (29)

The original SMAA method calculates three descriptive measures including the

acceptability index, the central weight vector, and the confidence factor. The

descriptive measures are computed using Monte Carlo simulations and therefore may

contain errors, which are usually small enough where they do not need to be accounted

for. The number of simulations drives the accuracy of the computations and can be

determined to maintain a specified error limit.

The first of the descriptive measures is the acceptability index, ai. The

acceptability index measures the probability that an alternative is the preferred

one for the assumed weight distributions used in the computations. It describes

the variety of different weight combinations which make an alternative the most

preferred alternative. It is computed as a multidimensional integral over the criteria

distributions and favorable weight space.
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ai =

∫

ξ∈χ

fχ(ξ)

∫

w∈Wi(ξ)

fw(w)dwdξ (30)

A high acceptability index suggests that the corresponding alternative is highly

acceptable as the preferred alternative, whereas an acceptability index of zero

indicates that the corresponding alternative is never the preferred alternative for

the given preference model.

The central weight vector, wc
i gives the expected center of gravity of the favorable

weight space. It is computed as the multidimensional integral over the criteria

distributions and the favorable weights.

wc
i =

1

ai

∫

ξ∈χ

fχ(ξ)

∫

w∈Wi(ξ)

fw(w)wdwdξ (31)

The central weight vector describes the weights which a hypothetical

decision-maker supporting the alternative would most likely select. However,

in application, deviations between the actual preferences and the central weight

vector may exist. Nonetheless, presenting the central weight vectors provides

decision-makers an inverse approach to collect information about the outcomes

of different preferences, providing decision-makers insight on how different sets of

weightings lead to specific outcomes.

The confidence factor, pci calculates the probability that an alternative is the

preferred one for the given central weight vector. It is computed as a multidimensional

integral over the criteria distributions.

pci =

∫

ξ∈χ:u(ξi,wc
i )≥u(ξk,wc

i ),∀k=1,...,m

fχ(ξ)dξ (32)

The confidence factor measures whether the criteria measurements are sufficient

in accuracy to discern between the alternatives when the weight vector is fixed. A

high confidence factor suggests that the corresponding alternative is likely to be the
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preferred alternative, whereas a low confidence factor suggests that the alternative

is unlikely to become the preferred alternative with the given central weight vector.

A.2 SMAA-2 [164, 156]

SMAA-2 was introduced in 2001 by Lahdelma and Salminen. It builds on the

original SMAA method by incorporating ranks among the alternatives and by

generalizing the utility function, made possible by allowing additional types of

preference information. Additional descriptive measures are computed with SMAA-2,

providing decision-makers with more insight to the multi-objective problem. The

new descriptive measures include the rank acceptability index, the best rank-type

measures, and the holistic acceptability index. In order to define the new measures,

rank must first be established. Rank is defined by the following:

rank(i, ξ, w) = 1 +
∑

k 6=i

ρ (u(ξk, w) > u(ξi, w)) (33)

where the function ρ outputs “1” if the inequality holds true and outputs “0”

if the inequality is false. The rank is defined by an integer, where a lower integer

indicates a higher rank. Rank “1” identifies the most preferred alternative and rank

“m” identifies the worst alternative. Once the rank is established, the sets of favorable

rank weights, W r
i are determined by the following:

W r
i (ξ) = {w ∈ W | rank(i, ξ, w) = r} (34)

A set of favorable rank weights contains all the weight vectors which results in

the corresponding alternative achieving the specified rank, r. SMAA-2 analyzes these

spaces in order to determine the rank descriptive measures. The rank acceptability

index, bri , is similar to the acceptability index in the original SMAA method, the
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difference being the measure now considers the acceptability for a certain rank. It

measures the probability that an alternative is of rank r for the assumed weight

distributions used in the computations. It describes the variety of different weight

combinations, which results in the alternative obtaining rank r. It is computed as

the multidimensional integral over the criteria distribution and the favorable rank

weights.

bri =

∫

ξ∈χ

fχ(ξ)

∫

w∈W r
i (ξ)

fw(w)dwdξ (35)

A rank acceptability index of “1” indicates that the corresponding alternative

will always obtain rank r for any given set of weights, whereas a rank acceptability

of “0” indicates that the alternative will never obtain the specified rank r. In an

ideal case, the preferred alternative will result in a rank acceptability index of 1 for

the first rank. For the purposes of this study the focus will be limited to the rank-1

acceptability index, the central-weight vectors, and the confidence factors. Figure 78

below demonstrates how the SMAA algorithm works for a notional problem featuring

three criteria. The “weight-space” is depicted as a triangle because the weights

must add up to one, and thus they are dependent on each other. Each point in the

weight-space represents a single weighting scenario. Every alternative is evaluated

and ranked with respect to that weighting scenario, and the process is repeated for

a number of different sampled weighting scenarios. The ranks are then accumulated

for all of these scenarios and used to calculate the rank-1 acceptability indices, the

central weight vectors for each alternative, and a confidence factor associated with

each central weight vector.
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Figure 78: Notional Diagram of Weight Space and SMAA Method

A.3 Simulations

In order to calculate the descriptive measures of SMAA, multidimensional integrations

are required. The high dimensionality and the various distributions involved in a

problem introduce a high level of complexity in calculating the integrals. Numerical

integration techniques are computationally expensive and infeasible as the required

effort increases exponentially with the number of dimensions. Instead, Monte Carlo

simulations are conducted to handle the complexity. In the Monte Carlo simulations,

values for the parameters (weights, criteria, etc.) are selected from their joint

probability distributions. The set of parameter values are then used in calculations to

determine the rank for the parameter values. Numerous iterations are executed and

the aggregation of the results approximates the descriptive measures. The accuracy

of these approximations can be set by executing a certain number of simulations. To

obtain a 95% confidence accuracy level, A, for the acceptability indices, the number

of simulations required, K, is determined by the following [99]:
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K =
1.962

4A2
(36)

Similarly, a 95% confidence accuracy level for central weight vectors can be

achieved with the following number of simulations:

K =
1.962

4aiA2
(37)

where ai is the acceptability index. In most cases, 10,000 simulations provide

sufficient accuracy [163].

There have been several applications of SMAA ranging from drug benefit-risk

analysis to ranking potential locations for a university kindergarten. Furthermore,

many applications have dealt with supporting, planning and development programs

such as cleaning polluted soil, ecosystem management, and centralizing cargo at

an airport hub. This wide range of applications demonstrates the versatility of

the SMAA algorithm. The ability to explore preference (weight) and parameter

(criteria) spaces without preference information allows the algorithm to maintain as

much objectivity as possible.

A.4 Generic Vehicle Error-Distributions as Stochastic

Criteria Measures

The SMAA method was implemented using open source software called JSMAA [162].

The method allows for defining a set of alternatives (in this case the potential generic

vehicle designs), a set of criteria to evaluate the alternatives (in this case the 12 metrics

that follow), and measurements of these criteria associated with each alternative. The

software allows for the measurements to be defined by exact values or by distributions

to capture uncertainty in the metrics, which can be used to evaluate the confidence
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factors mentioned in Section A.1. There are several options for distributions, but the

nature of the error distributions for the generic vehicle problem have very irregular

shapes depending on the metric. Thus, instead of assuming a functional form for

these error distributions, the discrete observations of error for the subset of airports

were used for the stochastic sampling with each observation having equal probability

of being sampled. The metrics of interest are as follows:

1. Total mission fuel burn [kg]

2. Terminal area departure fuel burn (below 3,000-ft) [kg]

3. Terminal area approach fuel burn (below 3,000-ft) [kg]

4. Total mission NOx emissions [g]

5. Terminal area departure NOx emissions (below 3,000-ft) [g]

6. Terminal area approach NOx emissions (below 3,000-ft) [g]

7. DNL 55-dB contour area [nmi2]

8. DNL 55-dB contour maximum width [nmi]

9. DNL 55-dB contour maximum length [nmi]

10. DNL 65-dB contour area [nmi2]

11. DNL 65-dB contour maximum width [nmi]

12. DNL 65-dB contour maximum length [nmi]

One issue concerning the use of the JSMAA software for this problem is that the

value functions associated with each criteria can only be ascending or descending,

whereas the nominal is best formulation for these metrics would require a value

function that peaks at zero, and decreases for values less than or greater than zero.
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Since no preference is placed on under-predicting versus over-predicting, this problem

can be avoided by instead using the distribution of the absolute value of the relative

error. This essentially folds the distribution over the zero-relative error point and

turns the problem into a minimum is best formulation.

One advantage of this approach is that the ranges for these error distributions

can be used to quickly gauge the existence of a design that captures zero-error.

The absolute value of the relative error distribution folds the distribution over the

zero-error axis, as is demonstrated in Figure 79. If the design fails to capture

zero-error, however, then the relative error distribution and the absolute value of

the relative error distribution will have similar shapes, as is demonstrated in Figure

80. In this example, the terminal area approach fuel-burn for the potential Generic

Vehicle is under-predicting the target metrics at every airport. As a result, the

relative error distribution does not capture zero error, and thus the absolute relative

error distribution is purely a reflection of the relative error distribution with a similar

shape. If the Generic Vehicle alternative had over-predicted terminal area approach

fuel-burn at every airport, then the distribution of the absolute value of the relative

error will be exactly identical to the distribution of the relative error.
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Figure 79: Different Relative and Absolute Relative Error Distributions
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Figure 80: Similar Relative and Absolute Relative Error Distributions

In the latter example, it was determined that a bias existed between the

EDS vehicle approach fuel-burn and NOx emissions and the targets generated

from the constituent database vehicles. Upon closer examination, this bias exists

because the EDS vehicles assume Continuous Descent Approaches (CDAs) whereas

many of the database vehicles feature traditional dive-and-drive approaches with

a level-off at approximately 3,000-ft altitude, as is demonstrated in Figure 81.

Until CDA procedures are developed for all of the actual vehicles or dive-and-drive

approach procedures are designed within the EDS-AEDT mapping, this bias remains

irreducible. As a result, every potential Generic Vehicle from EDS features this bias.

Given that these differences are due to different operational assumptions rather than

vehicle characteristics, this observation indicated that terminal-area approach metrics

should be left out of the SMAA analysis. This difference in approach procedures

also manifested itself in the form of the DNL contour maximum lengths, and thus

contour length was also removed from the SMAA analysis. This effectively reduced

the number of metrics included in the SMAA analysis from 12 to 8.

It should be noted that the setup for the SMAA analysis is the same for each of

the validation Tests A-F. The only change that occurred is for Test E and F, the DNL
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Figure 81: Approach Trajectory Comparison

contour widths were removed and replaced by the Detour index and the Spin index

described in Figure 16. This increased the number of metrics from 8 to 10.
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[63] Janić, M., The Sustainability of Air Transportation: A Quantitative Analysis
and Assessment , Ashgate Publishing Limited, 2007.

[64] Holmes, C., Tang, Q., and Prather, M., “Uncertainties in Climate Assessment
for the Case of Aviation NO,” Proceedings of the National Academy of Sciences
of the United States of America, Vol. 108 (27), July 2011, pp. 10997–1002,
PMID: 21690364.

[65] Rypdal, K., “Aircraft Emissions,” Good Practice Guidance and Uncertainty
Management in National Greenhouse Gas Inventories .

[66] “Health and Environmental Impacts of NOx,” Technical Report, United States
Environmental Protection Agency (EPA), February 2013.

[67] Singh, A. and Agrawal, M., “Acid rain and its ecological consequences,” Journal
of Environmental Biology , Vol. 29, No. 1, 2008, pp. 15–24.

219



www.manaraa.com

[68] More, S. R., Aircraft Noise Characteristics and Metrics , Doctoral Thesis,
Purdue University, West Lafayette, Indiana, December 2010.

[69] “Noise Standards: Aircraft Type and Airworthiness Certification, Calculation
of Effective Perceived Noise Level from Measured Data,” United States
Department of Transportation (USDOT), Federal Aviation Administration
(FAA), Federal Aviation Regulation F.A.R. Part 36, Appendix A2 to Part 36 -
§A36.4, 2002.

[70] “Tutorial: Aircraft Noise and its Prediction,” National Aeronautics and Space
Administration (NASA), June 2013, https://mdao.grc.nasa.gov/reengine/
noise_primer.html.

[71] “Procedure for the Calculation of Airplane Noise in the Vicinity of Airports,”
Society of Automotive Engineers (SAE), Committee A-21, Aircraft Noise,
Aerospace Information Report SAE-AIR-1845, March 1986.

[72] Boeker, E. R., Dinges, E., He, B., Fleming, G., Roof, C. J., Gerbi, P. J., Rapoza,
A. S., and Hemann, J., Integrated Noise Model (INM) Version 7.0 Technical
Manual , U.S. Department of Transportation (USDOT) Federal Aviation
Administration (FAA) Office of Environment and Energy, 800 Independence
Avenue, S.W., Washington, DC 20591, January 2008.

[73] “Report on Standard Method of Computing Noise Contours around Civil
Airports,” European Civil Aviation Conference, Tech. Rep. 29, 1997.

[74] Schomer, P. D., “Criteria for Assessment of Noise Annoyance,” Noise Control
Engineering Journal , Vol. 53, No. 4, July-August 2005, pp. 125–137.

[75] Schultz, T. J., “Synthesis of Social Surveys on Noise Annoyance,” Journal of
the Acoustical Society of America, Vol. 64, No. 2, 1978, pp. 377–405.

[76] “Portfolio of Goals, FY 2012,” Technical Report, Federal Aviation
Administration, 2012.

[77] “Noise Exposure Map and Noise Compatibility Program, Executive Summary,”
Code of Federal Regulations 14 CFR Part 150 Study, Bradley International
Airport, October 2003.

[78] “Airport Noise and Emissions Regulations: Cleveland-Hopkins International,”
The Boeing Company, 2011, http://www.boeing.com/commercial/noise/

cleveland_hopkins.html.

[79] Bernardo, J. E., Formulating and Implementing a Generic Fleet-Level Noise
Methodology , Doctoral Thesis, Georgia Institute of Technology, North Ave NW,
Atlanta, GA 30332, May 2013.

220



www.manaraa.com

[80] Angel, S., Parent, J., and Civco, D., “Ten Compactness Properties of Circles:
Measuring Shape in Geography,” Canadian Geographer , Vol. 54, No. 4, 2010,
pp. 441–461.

[81] “TECHNICAL DOCUMENTATION: 2010 Census Summary File 1,” 2010
Census of Population and Housing Units SF1/10-4 (RV), U.S. Census Bureau,
September 2012.

[82] “TIGER Products,” United States Census Bureau, 2014, https://www.

census.gov/geo/maps-data/data/tiger.html.

[83] Kish, C., An Estimate of the Global Impact of Commercial Aviation Noise,
Master’s thesis, Massachusetts Institute of Technology, 2008.

[84] Moolchandani, K. A., Agusdinata, D. B., DeLaurentis, D. A., and Crossley,
W. A., “Assessment of the Effect of Aircraft Technological Advancement on
Aviation Environmental Impacts,” 51st AIAA Aerospace Sciences Meeting
including the New Horizons Forum and Aerospace Exposition, No. AIAA
2013-0652, Purdue University, January 2013.

[85] http://www.seatguru.com/.

[86] Hahn, R. W., “An Economic Analysis of Scrappage,” RAND Journal of
Economics , Vol. 26, No. 2, 1995, pp. 222–242.

[87] Dikshit, P. N. and Crossley, W. A., “Airport Noise Model Suitable
for Fleet-Level Studies,” 9th AIAA Aviation Technology, Integration, and
Operations Conference (ATIO), No. AIAA 2009-6937, Purdue University,
September 2009.

[88] Hogg, R. and Tanis, E., Probability and Statistical Inference, Pearson, 8th ed.,
2010.

[89] Pfaender, H., Jimenez, H., and Mavris, D., “Effects of Technology R&D
Investments on System Level Performance,” Aviation Technology, Integration,
and Operations Conference at AIAA Aviation, No. AIAA 2013-4284, Georgia
Institute of Technology, Los Angeles, CA, August 2013.

[90] Aly, M., “Survey on Multiclass Classification Methods,” .

[91] Branke, J., Deb, K., Miettinen, K., and Slowinski, R., editors,
Multiobjective Optimization: Interactive and Evolutionary Approaches ,
Springer Science+Business Media, LLC, 2008.

[92] Bhaduri, B., Bright, E., and Coleman, P., “Development of High Resolution
Population Distribution Data to Enhance Cancer Prevention and Control
Research,” SEER Special Project 08 RFP No. NCI-PC-25014-20, Geographic
Information Science & Technology: Oak Ridge National Laboratory, Oak Ridge,
TN 37831-6017, 2004.

221



www.manaraa.com

[93] Wu, S., Qiu, X., and Wang, L., “Population Estimation Methods in GIS and
Remote Sensing: A Review,” GIScience & Remote Sensing , Vol. 42, No. 1,
2005, pp. 80–96.

[94] Koziel, S. and Leifsson, L., editors, Surrogate-Based Modeling and Optimization:
Applications in Engineering , Springer Science+Business Media, 2013.

[95] Bandler, J., Cheng, Q., Dakroury, S., Mohamed, A., Bakr, M., Madsen, K., and
Sndergaard, J., “Space mapping: the state of the art,” IEEE Transactions on
Microwave Theory and Techniques , Vol. 52, No. 1, January 2004, pp. 337–361.

[96] Anderson, M. and Robinson, J., “Generalized Discriminant Analysis Based on
Distances,” Australian & New Zealand Journal of Statistics , Vol. 45, Issue 3,
No. DOI: 10.1111/1467-842X.00285, September 2003, pp. 301–318.

[97] Rencher, A. C., Methods of Multivariate Analysis , JJohn Wiley & Sons, Inc.,
2002.

[98] Hastie, T., Tibshirani, R., and Friedman, J., editors, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Springer Science+Business
Media, LLC, 2nd ed., 2009.

[99] Milton, J. and Arnold, J., Introduction to Probability and Statistics ,
McGraw-Hill International, New York, NY, 3rd ed., 1995.

[100] Hyndman, R. J. and Koehler, A. B., “Another look at measures of forecast
accuracy,” International Journal of Forecasting , Vol. 22, No. 4, 2006,
pp. 679–688.

[101] Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N., Spatial Tessellations
Concepts and Applications of Voronoi Diagrams , No. ISBN 0-471-98635-6, John
Wiley, 2nd ed., 2000.

[102] Ertl, B., “Euclidean Voronoi diagram,” https://commons.wikimedia.org/

wiki/File:Euclidean_Voronoi_diagram.svg.

[103] Kirby, M., “Environmental Design Space (EDS),” Presentation for Aviation
Environmental Tools Colloquium COE Project 14, Federal Aviation
Administration, December 2010.

[104] Kirby, M. and Mavris, D., “The Environmental Design Space,” 26th
International Congress of the Aeronautical Sciences , Vol. 26th International
Congress of the Aeronautical Sciences, Georgia Institute of Technology, 2008.

[105] Kestner, B. K., Schutte, J. S., Gladin, J. C., and Mavris, D. N., “Ultra
High Bypass Ratio Engine Sizing and Cycle Selection Study for a Subsonic
Commercial Aircraft in the N+2 Timeframe,” Proceedings of ASME Turbo
Expo 2011 , No. GT2011-45370, Aerospace Systems Design Laboratory (ASDL),
Vancouver, Canada, June 2011.

222



www.manaraa.com

[106] Converse, G. and Giffin, R., “Extended Parametric Representation of
Compressors Fans and Turbines, Vol. I - CMPGEN Users Manual,” Contractor
Report NASA CR-174645, March 1984.

[107] Glassman, A., “Design Geometry and Design/Off-Design Performance
Computer Codes for Compressors and Turbines,” Contractor Report NASA
CR 198433, University of Toledo, Toledo, Ohio, 1995.

[108] Lytle, J., “The Numerical Propulsion System Simulation: A Multidisciplinary
Design for Aerospace Vehicles,” Technical Memorandum NASA
TM-1999-209194, NASA Glenn Research Center, Cleveland, Ohio, September
1999.

[109] Lytle, J., “The Numerical Propulsion System Simulation: An Overview,”
Technical Memorandum NASA TM-2000-209915, NASA Glenn Research
Center, Cleveland, Ohio, June 2000.

[110] Onat, E. and Klees, G., “A Method to Estimate Weight and Dimensions of
Large and Small Gas Turbine Engines,” Contractor Report NASA-CR-159481,
Boeing Aerospace Company, January 1979.

[111] Tong, M., Halliwell, I., and Ghosn, L., “A Computer Code for Gas
Turbine Engine Weight and Disk Life Estimation,” ASME Turbo Expo, No.
GT-2002-30500, 2002.

[112] Schutte, J., Simultaneous Multi-Design Point Approach to Gas Turbine
On-Design Cycle Analysis for Aircraft Engines , Doctoral Thesis, Georgia
Institute of Technology, Atlanta, Georgia, May 2009.

[113] McCullers, L., “Flight Optimization System,” Users Guide Release 6.12, Swales
Aerospace, October 2004.

[114] Norman, P. D., Lister, D. H., Lecht, M., Madden, P., Park, K., Penanhoat, O.,
Plaisance, C., and Renger, K., “Development of the Technical Basis for a New
Emission Parameter Covering the Whole AIRcraft Operation (NEPAIR),” Final
Technical Report G4RD-CT-2000-00182, European Commission, September
2003.

[115] Zorumski, W., “Aircraft Noise Prediction Program Theoretical Manual, Part
1,” Technical Memorandum NASA TM-83199-Pt-1, NASA Langley Research
Center, Hampton, Virginia, February 1982.

[116] Zorumski, W., “Aircraft Noise Prediction Program Theoretical Manual, Part
2,” Technical Memorandum NASA TM-83199-Pt-2, NASA Langley Research
Center, Hampton, Virginia, February 1982.

[117] de Luis, J., A Process for the Quantification of Aircraft Noise and Emissions
Interdependencies , Doctoral Thesis, Georgia Institute of Technology, North Ave
NW, Atlanta, GA 30332, August 2008.

223



www.manaraa.com

[118] Kestner, B. K., Schutte, J. S., Tai, J. C., Perullo, C. A., and Mavris,
D. N., “Surrogate Modeling for Simultaneous Engine Cycle and Technology
Optimization for Next Generation Subsonic Aircraft,” Proceedings of ASME
Turbo Expo 2012 , No. GT2012-68724, Aerospace Systems Design Laboratory
(ASDL), Copenhagen, Denmark, June 2012.

[119] McNamara, S., “The case for investing in the regional airline industry,” Tech.
rep., European Regions Airline Association (Limited), 2014.

[120] de Souza e Silva, P. C., “Market Outlook 2015 - 2034,” Tech. rep., Embraer,
June 2015, www.embraermarketoutlook.com.

[121] “Market Forecast 2015 - 2034,” Tech. rep., Bomabardier Commercial Aircraft,
2015.

[122] Hulst, D., “Current Market Outlook 2014-2033,” Tech. rep., Boeing Commercial
Airplanes Market Analysis, 2014.

[123] LeVine, M., Kirby, M., and Mavris, D., “Noise-Sensitivity to Vehicle-Level
Design Variables,” 12th AIAA Aviation, Technology, Integration, and
Operations (ATIO) Conference and 14th AIAA/ISSM , 12th AIAA Aviation,
Technology, Integration, and Operations (ATIO) Conference and 14th
AIAA/ISSM, Georgia Institute of Technology, Indianapolis, IN, September
2012.

[124] Price, M., editor, MasMaster ArcGIS R©, McGraw-Hill, sixth ed., 2014.

[125] Long, D., Lee, D., Johnson, J., Gaier, E., and Kostiuk, P., “Modeling Air Traffic
Management Technologies With a Queuing Network Model of the National
Airspace System,” NASA Contractor Report NASA / CR- 1999- 208988,
Logistics Management Institute, McLean, Virginia, January 1999.

[126] “FESG CAEP/8 Traffic and Fleet Forecasts Information Paper 2,”
Environmental Protection Technical Report TR CAEP/8-IP/2, International
Civil Aviation Organization Committee on Aviation, 2008.

[127] Hollingsworth, P., Pfaender, H., and Jimenez, H., “A Method for Assessing
the Environmental Benefit of FutureAviation Technologies,” Proceedings of the
26th International Congress of the Aeronautical Sciences ICAS 2008 , Optimage
Ltd., Edinburg, UK, Anchorage, AK, Sept. 2008.

[128] Pfaender, H., Jimenez, H., and Mavris, D., “Effects of Technology R&D
Investments on System Level Performance,” Aviation Technology, Integration,
and Operations Conference at AIAA Aviation, 2013.

[129] Schutte, J. and Mavris, D., “FY2011 Environmentally Responsible Aviation
Systems Analysis Report: Technology Portfolio and Advanced Configurations,”
Tech. rep., Georgia Institute of Technology, January 2011.

224



www.manaraa.com

[130] Bernardo, J. E., Kirby, M. R., and Mavris, D., “DNL Contour Area Sensitivity
to Fleet-Level Operational Characteristics,” AIAA/3AF Aircraft Noise and
Emissions Reduction Symposium at AIAA Aviation, No. AIAA 2014-2877,
Georgia Institute of Technology, Atlanta, GA, June 2014.

[131] “Terminal Area Forecast Summary, Fiscal Years 2013-2040,” Technical Report,
Federal Aviation Administration, 2013.

[132] Jimenez, H., F. C. P. H. M. D., “Development of fleet scenarios for next decadal
technologies and concepts,” Proceedings of the 13th AIAA Aviation Technology,
Integration, and Operations (ATIO) Conference at AIAA Aviation, Georgia
Institute of Technology, AIAA, August 2013.

[133] Bernardo, J. E., Kiehl, O., Kirby, M. R., and Mavris, D., “Analysis of Vehicle
Class Contributions to Total DNL Response,” AIAA/3AF Aircraft Noise and
Emissions Reduction Symposium at AIAA Aviation, No. AIAA 2014-2876,
Georgia Institute of Technology, Atlanta, GA, June 2014.

[134] Bernardo, J. E., Kirby, M., and Mavris, D., “Development of generic
airport categories for rapid fleet-level noise modeling,” Journal of Aerospace
Operations , , No. 2, June 2015, pp. 91–119.

[135] “Airport Design,” U.S. Department of Transportation (USDOT), Federal
Aviation Administration (FAA), Advisory Circular AC 150/5300-13A CHG 1,
February 2014.

[136] “Airport Master Plans,” US Department of Transportation (USDOT), Federal
Aviation Administration (FAA), Advisory Circular AC 150/5070-6B Change 1,
May 2001.

[137] “Runway Length Requirements for Airport Design,” US Department of
Transportation (USDOT), Federal Aviation Administration (FAA), Advisory
Circular AC 150/5325-4B, July 2005.

[138] Yim, W. F., “An Analysis of Airport Runway Designs to Maximize New
Airport Throughput to meet Chinas Long-Term Air Travel Demand,” American
Society of Civil Engineers (ASCE): Sustainable Transportation Systems , , No.
10.1061/9780784412299.0011, 2012, pp. 77–84.

[139] Butler, V., “Increasing Airport Capacity Without Increasing Airport Size,”
Public Policy Research, Reason Foundation, 3415 S. Sepulveda Blvd., Suite
400, Los Angeles, CA 90034, March 2008.

[140] LeVine, M., Kaul, A., Bernardo, J., Kirby, M., and Mavris, D., “Methodology
for Calibration of ANGIM Subjected to Atmospheric Uncertainties,” Aviation
Technology, Integration, and Operations Conference at AIAA Aviation, No.
AIAA 2013-4321 in 2013 Aviation Technology, Integration, and Operations
Conference (ATIO), Georgia Institute of Technology, Los Angeles, CA, August
2013.

225



www.manaraa.com

[141] LeVine, M. J., Moss, R., Kirby, M., and Mavris, D., “Methodology for
Runway-Level DNL Contour Calibration in ANGIM to Capture Impacts of
Deviation from Standard Day Sea-Level Atmosphere,” AIAA Modeling and
Simulation Technologies Conference at AIAA Aviation, No. AIAA 2014-2348,
Georgia Institute of Technology, Atlanta, GA, June 2014.

[142] Wilson, A. J., LeVine, M. J., Bernardo, J. E., Kirby, M., and Mavris, D.,
“Development of Generic Ground Tracks of Performance Based Navigation
Operations for Fleet-Level Airport Noise Analysis,” 15th AIAA Aviation
Technology, Integration, and Operations Conference at AIAA Aviation, No.
AIAA 2015-3029, Georgia Institute of Technology, Dallas, TX, 2015.

[143] Antoine, N. E. and Kroo, I. M., “Framework for Aircraft Conceptual Design and
Environmental Performance Studies,” AIAA Journal , Vol. 43, No. 10, October
2005.

[144] Bernardo, J., Kirby, M., and Mavris, D., “Development of a Generic Fleet-Level
Noise Methodology,” 50th AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition, Georgia Institute of Technology,
Nashville, TN, January 2012.

[145] Charnetski, J. R., The Multiple Attribute Problem with Partial Information:
The Expected Value and Comparative Hypervolume Methods , Doctoral Thesis,
University of Texas at Austin, Austin, TX, 1973.

[146] Charnetski, J. R. and Soland, M. R., “Multiple-Attribute Decision Making
with Partial Information: The Comparative Hypervolume Criterion,” Naval
Research Logistics, Quarterly , Vol. 25, 1978, pp. 279–288.

[147] e Costa, B., “A Multicriteria Decision Aid Methodology to Deal with Conflicting
Situations on the Weights,” European Journal of Operational Research, Vol. 26,
1986, pp. 22–34.

[148] DuBois, D. and Paynter, G. C., “Fuel Flow Method 2 for Estimating Aicraft
Emissions,” SAE Technical Paper 2006-01-1987, The Boeing Co., Warrendale,
PA, 2006.

[149] Figueira, J., Greco, S., and Ehrgott, M., Multiple Criteria Decision Analysis:
State of the Art Surveys , Vol. 78 of International Series in Operations Research
& Management Science, Springer Science+Business Media, Inc., New York,
2005.

[150] Greitzer, E. M., “Volume 2: Appendices Design Methodologies for
Aerodynamics, Structures, Weight, and Thermodynamic Cycles,” FINAL
REPORT Cooperative Agreement Number NNX08AW63A, Massachusetts
Institute of Technology, Aurora Flight Sciences, and Pratt & Whitney Team,
March 2010.

226



www.manaraa.com

[151] Inselberg, A., Parallel Coordinates: Visual Multidimensional Geometry and
its Applications , No. DOI: 10.1007/978-0-387-68628-8, Springer New York, Tel
Aviv University, Israel, 2009.

[152] Kanter, J., “U.N. Group Moves to Develop Global Airline Emission Rules,”
New York Times , October 2013.

[153] Kingsland, S., Modeling nature: episodes in the history of population ecology ,
University of Chicago Press, Chicago, IL, 1995.

[154] Kroo, I. M., “An Interactive System for Aircraft Design and Optimization,”
Aerospace Design Conference, , No. AlAA 92-1190, February 1992.

[155] Lahdelma, R., Hokkanen, J., and Salminen, P., “SMAA-Stochastic
Multiobjective Acceptability Analysis,” European Journal of Operational
Research, Vol. 106, 1998, pp. 137–143.

[156] Lahdelma, R. and Salminen, P., “SMAA-2: Stochastic Multicriteria
Acceptability Analysis for Group Decision Making,” Operations Research,
Vol. 49, No. 3, 2001, pp. 444–454.

[157] Malthus, T., An Essay on the Principle of Population, Oxford World’s Classics
(reprint), 1798.

[158] McIntosh, R., The Background of Ecology , Cambridge University Press, 1985.

[159] Nuic, A., User Manual for the Base of Aircraft Data (BADA),
EUROCONTROL Experimental Centre, Centre de Bois des Bordes, B.P.15,
F - 91222 Brétigny-sur-Orge, Cedex, France, Revision 3.10 ed., April 2012.

[160] Renshaw, E., Modeling Biological Populations in Space and Time, Cambridge
University Press, 1991.

[161] Senzig, D. A., Fleming, G. G., and Iovinelli, R. J., “Modeling of Terminal-Area
Airplane Fuel Consumption,” AIAA Journal of Aircraft , Vol. 46, No. 4,
July-August 2009.

[162] Tervonen, T., “JSMAA: Open Source Software for SMAA Computations
Version 1.0.2,” International Journal of Systems Science, 2012.

[163] Tervonen, T., “Stochastic Multicriteria Acceptability Analysis - Theory,
Applications, and Software,” ALIO/INFORMS Joint International
Meeting , Buenos Aires, June 2010, http://drugis.org/files/

tervonen-pres-alioinforms2010.pdf [cited April 2013].

[164] Tervonen, T. and Figueira, J., “A Survey on Stochastic Multicriteria
Acceptability Analysis Methods,” Journal of Multi-Criteria Decision Analysis ,
Vol. 15, No. 1/2, January 2008, pp. 1–14.

227



www.manaraa.com

[165] Tobler, W., “A computer movie simulating urban growth in Detroit region,”
Economic Geography , Vol. 46, 1970, pp. 230–240.

[166] Tobler, W. R., “Smooth Pyncophylactic Interpolation for Geographical
Regions,” Journal of the American Statistical Association, Vol. 74 (367), 1979,
pp. 519–530.

[167] Willcox, K., “Development of a Distributed Approach to System Level
Uncertainty Quantification,” Partnership for Air Transportation Noise and
Emissons Reduction (PARTNER), 2014, http://partner.mit.edu/projects.

[168] Zhan, F. B., Tapia-Silva, F., and Santillana, M., “Estimating small-area
population growth using geographic-knowledge-guided cellular automata,”
Journal of Remote Sensing , Vol. 31, No. 21, November 2010, pp. 56895707.

[169] “T-100 Database,” Research and Innovative Technology Administration
(RITA), Bureau of Transportation Statistics (BTS), transtats.bts.gov.

[170] “International Civil Aviation Organization (ICAO) Engine Emissions
Databank (EEDB),” European Aviation Safety Administration
(EASA), April 2013, http://www.easa.europa.eu/environment/edb/

aircraft-engine-emissions.php.

[171] “International Civil Aviation Organization (ICAO) Aircraft Noise and
Performance (ANP) Database,” Eurocontrol, December 2012, http://www.

aircraftnoisemodel.org/.

228



www.manaraa.com

VITA

Matthew J. LeVine was born and raised in St. Petersburg, Florida. After graduating

from an International Baccalaureate program at St. Petersburg High School, Matthew

enrolled in a dual undergraduate degree program between Emory University and

the Georgia Institute of Technology. At Emory University, Matthew focused on

music theory, trombone, and music composition. The program culminated in an

undergraduate Honors Thesis in music composition, for which he composed and

arranged a performance of a fifty-minute oratorio entitled Thar She Blows! Matthew

graduated magna cum laude with a Bachelor of Arts in Music from Emory University

in 2007.

The same year, Matthew began an undergraduate program in aerospace

engineering at Georgia Tech. This program culminated in a senior design project

entitled the Space Weather Experimental PlaTform (SWEPT), which was a design

of a constellation of satellites for measuring and characterizing the extent of Earth’s

magnetotail around the Sun-Earth L2 Lagrange point. The SWEPT design earned

first place in the 2009-2010 AIAA Undergraduate Team Space Design competition,

and as project manager Matthew presented a poster of the design at the AIAA

Space 2010 Conference and Exposition. Matthew graduated with Highest Honors

with a Bachelor of Science in Aerospace Engineering from the Georgia Institute of

Technology in 2010.

Immediately following graduation, Matthew began his graduate degree at Georgia

Tech under Dr. Dimitri Mavris in the Aerospace Systems Design Laboratory.

Matthew earned his Masters in Aerospace Engineering in the Spring of 2012, and

was promoted to Senior Graduate Researcher due to his initiative and leadership

229



www.manaraa.com

within the Civil Aviation Division. Matthew also has focused on teaching, earning an

Advanced Level Teaching Certificate as part of the Tech to Teaching Higher Education

Pathway through the Center for the Enhancement of Teaching and Learning. After

graduation, Matthew will serve as a lecturer in Aerospace Engineering at Georgia

Tech Lorraine in Metz, France for the 2016 spring semester. In the future, he plans

on pursuing a faculty position at a research university.

230


